Abstract
We have studied the magnetoresistance (MR) of hydrogen plasma-treated pure ZnO wires of tens of micrometer diameter at different temperatures. A negative MR of 1% at 8 T applied field is measured for all wires at 4 K, independent of the temperature (300 K … 773 K) used during the hydrogen treatment. However, a positive MR develops, the higher the treatment temperature. The MR can be explained with a semiempirical model taking into account local magnetic moments and the s–d exchange interaction. These results together with field anisotropy in the MR indicate the appearance of magnetic order due to the hydrogen treatment in agreement with recently published reports on the influence of hydrogen in bulk ZnO single crystals. Hydrogen doping may provide a way to trigger defect-induced magnetism in small oxide structures.
Similar content being viewed by others
References
E.J. Duplock, M. Scheffler, and P.J.D. Lindan: Hallmark of perfect graphite. Phys. Rev. Lett. 92, 225502–1–4 (2004).
M.H.N. Assadi, Y.B. Zhang, and S. Li: Hydrogen multicenter bond mediated magnetism in co doped ZnO. J. Phys. Condens. Matter 22, 156001 (2010).
N. Sanchez, S. Gallego, J. Cerdá, and M.C. Muñoz: Tuning surface metallicity and ferromagnetism by hydrogen adsorption at the polar ZnO(0001) surface. Phys. Rev. B 81, 115301 (2010).
E.Z. Liu and J.Z. Jiang: Magnetism of O-terminated ZnO(0001) with adsorbates. J. Phys. Chem. C 113, 16116 (2009).
M.H.N. Assadi, R.K. Zheng, S. Li, and S.R. Ringer: First-principles investigation of electrical and magnetic properties of ZnO based diluted magnetic semiconductors codoped with H. J. Appl. Phys. 111, 113901 (2012).
H. Ohldag, P. Esquinazi, E. Arenholz, D. Spemann, M. Rothermel, A. Setzer, and T. Butz: The role of hydrogen in room-temperature ferromagnetism at graphite surfaces. New J. Phys. 12, 123012 (2010).
J. Barzola-Quiquia, W. Böhlmann, P. Esquinazi, A. Schadewitz, A. Ballestar, S. Dusari, L. Schultze-Nobre, and B. Kersting: Enhancement of the ferromagnetic order of graphite after sulphuric acid treatment. Appl. Phys. Lett. 98, 192511 (2011).
R.K. Singhal, A. Samariya, S. Kumar, Y.T. Xing, U.P. Deshpande, T. Shripathi, and E. Baggio-Saitovitch: Defect-induced reversible ferromagnetism in hydrogenated ZnO: Co. J. Magn. Magn. Mater. 322, 2187 (2010).
H-J. Lee, C.H. Park, S-Y. Jeong, K-J. Yee, C.R. Cho, M-H. Jung, and D.J. Chadi: Hydrogen-induced ferromagnetism in ZnO: Co. Appl. Phys. Lett. 88, 062504 (2006).
H. Zhang, S. Qin, Y. Cao, Z. Yang, L. Si, W. Zhong, D. Wu, M. Xu, and Q. Xu: Enhanced room temperature ferromagnetism in hydrogenated Zn0.98Mn0.02O. Appl. Surf. Sci. 271, 421–423 (2013).
M. Stoneham: The strange magnetism of oxides and carbons. J. Phys. Condens. Matter 22, 074211 (2010).
O.V. Yazyev: Emergence of magnetism in graphene materials and nanostructures. Rep. Prog. Phys. 73, 056501 (2010).
O. Volnianska and P. Boguslawski: Magnetism of solids resulting from spin polarization of p orbitals. J. Phys. Condens. Matter 22, 073202 (2010).
S.B. Ogale: Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater. 22, 3125–3155 (2010).
M. Khalid, P. Esquinazi, D. Spemann, W. Anwand, and G. Brauer: Hydrogen-mediated ferromagnetism in ZnO single crystals. New J. Phys. 13(6), 063017 (2011).
M. Khalid and P. Esquinazi: Hydrogen-induced ferromagnetism in ZnO single crystals investigated by magnetotransport. Phys. Rev. B 85, 134424 (2012).
W. Liang, B.D. Yuhas, and P. Yang: Magnetotransport in Co-doped ZnO nanowires. Nano Lett. 9, 892–896 (2009).
P.J. Cote and L.V. Meisel: Resistivity in amorphous and disordered crystalline alloys. Phys. Rev. Lett. 39, 102 (1977).
Q. Xu, L. Hartmann, H. Schmidt, H. Hochmuth, M. Lorenz, R. Schmidt-Grund, C. Sturm, D. Spemann, M. Grundmann, and Y. Liu: Magnetoresistance and anomalous Hall effect in magnetic ZnO films. J. Appl. Phys. 101, 063918 (2007).
R.P. Khosla and J.R. Fischer: Magnetoresistance in degenerate CdS: Localized magnetic moments. Phys. Rev. B 2, 4084–4097 (1970).
Y-F. Tian, Y-F. Li, and T. Wu: Tuning magnetoresistance and exchange coupling in ZnO by doping transition metals. Appl. Phys. Lett. 99, 222503 (2011).
M. He, Y.F. Tian, D. Springer, I.A. Putra, G.Z. Xing, E.E.M. Chia, S.A. Cheong, and T. Wu: Polaronic transport and magnetism in Ag-doped ZnO. Appl. Phys. Lett. 99, 222511 (2011).
Acknowledgments
This work was supported by the Collaborative Research Center (SFB762) “Functionality of Oxide Interfaces”. We thank Dr. J. Barzola-Quiquia for technical support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lorite, I., Esquinazi, P., Zapata, C. et al. Transport properties of hydrogenated ZnO microwires. Journal of Materials Research 29, 78–83 (2014). https://doi.org/10.1557/jmr.2013.219
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2013.219