Skip to main content
Log in

Transport properties of hydrogenated ZnO microwires

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have studied the magnetoresistance (MR) of hydrogen plasma-treated pure ZnO wires of tens of micrometer diameter at different temperatures. A negative MR of 1% at 8 T applied field is measured for all wires at 4 K, independent of the temperature (300 K … 773 K) used during the hydrogen treatment. However, a positive MR develops, the higher the treatment temperature. The MR can be explained with a semiempirical model taking into account local magnetic moments and the sd exchange interaction. These results together with field anisotropy in the MR indicate the appearance of magnetic order due to the hydrogen treatment in agreement with recently published reports on the influence of hydrogen in bulk ZnO single crystals. Hydrogen doping may provide a way to trigger defect-induced magnetism in small oxide structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. E.J. Duplock, M. Scheffler, and P.J.D. Lindan: Hallmark of perfect graphite. Phys. Rev. Lett. 92, 225502–1–4 (2004).

  2. M.H.N. Assadi, Y.B. Zhang, and S. Li: Hydrogen multicenter bond mediated magnetism in co doped ZnO. J. Phys. Condens. Matter 22, 156001 (2010).

    Article  CAS  Google Scholar 

  3. N. Sanchez, S. Gallego, J. Cerdá, and M.C. Muñoz: Tuning surface metallicity and ferromagnetism by hydrogen adsorption at the polar ZnO(0001) surface. Phys. Rev. B 81, 115301 (2010).

    Article  Google Scholar 

  4. E.Z. Liu and J.Z. Jiang: Magnetism of O-terminated ZnO(0001) with adsorbates. J. Phys. Chem. C 113, 16116 (2009).

    Article  CAS  Google Scholar 

  5. M.H.N. Assadi, R.K. Zheng, S. Li, and S.R. Ringer: First-principles investigation of electrical and magnetic properties of ZnO based diluted magnetic semiconductors codoped with H. J. Appl. Phys. 111, 113901 (2012).

    Article  Google Scholar 

  6. H. Ohldag, P. Esquinazi, E. Arenholz, D. Spemann, M. Rothermel, A. Setzer, and T. Butz: The role of hydrogen in room-temperature ferromagnetism at graphite surfaces. New J. Phys. 12, 123012 (2010).

    Article  Google Scholar 

  7. J. Barzola-Quiquia, W. Böhlmann, P. Esquinazi, A. Schadewitz, A. Ballestar, S. Dusari, L. Schultze-Nobre, and B. Kersting: Enhancement of the ferromagnetic order of graphite after sulphuric acid treatment. Appl. Phys. Lett. 98, 192511 (2011).

    Article  Google Scholar 

  8. R.K. Singhal, A. Samariya, S. Kumar, Y.T. Xing, U.P. Deshpande, T. Shripathi, and E. Baggio-Saitovitch: Defect-induced reversible ferromagnetism in hydrogenated ZnO: Co. J. Magn. Magn. Mater. 322, 2187 (2010).

    Article  CAS  Google Scholar 

  9. H-J. Lee, C.H. Park, S-Y. Jeong, K-J. Yee, C.R. Cho, M-H. Jung, and D.J. Chadi: Hydrogen-induced ferromagnetism in ZnO: Co. Appl. Phys. Lett. 88, 062504 (2006).

    Article  Google Scholar 

  10. H. Zhang, S. Qin, Y. Cao, Z. Yang, L. Si, W. Zhong, D. Wu, M. Xu, and Q. Xu: Enhanced room temperature ferromagnetism in hydrogenated Zn0.98Mn0.02O. Appl. Surf. Sci. 271, 421–423 (2013).

    Article  CAS  Google Scholar 

  11. M. Stoneham: The strange magnetism of oxides and carbons. J. Phys. Condens. Matter 22, 074211 (2010).

    Article  Google Scholar 

  12. O.V. Yazyev: Emergence of magnetism in graphene materials and nanostructures. Rep. Prog. Phys. 73, 056501 (2010).

    Article  Google Scholar 

  13. O. Volnianska and P. Boguslawski: Magnetism of solids resulting from spin polarization of p orbitals. J. Phys. Condens. Matter 22, 073202 (2010).

    Article  CAS  Google Scholar 

  14. S.B. Ogale: Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater. 22, 3125–3155 (2010).

    Article  CAS  Google Scholar 

  15. M. Khalid, P. Esquinazi, D. Spemann, W. Anwand, and G. Brauer: Hydrogen-mediated ferromagnetism in ZnO single crystals. New J. Phys. 13(6), 063017 (2011).

    Article  Google Scholar 

  16. M. Khalid and P. Esquinazi: Hydrogen-induced ferromagnetism in ZnO single crystals investigated by magnetotransport. Phys. Rev. B 85, 134424 (2012).

    Article  Google Scholar 

  17. W. Liang, B.D. Yuhas, and P. Yang: Magnetotransport in Co-doped ZnO nanowires. Nano Lett. 9, 892–896 (2009).

    Article  CAS  Google Scholar 

  18. P.J. Cote and L.V. Meisel: Resistivity in amorphous and disordered crystalline alloys. Phys. Rev. Lett. 39, 102 (1977).

    Article  CAS  Google Scholar 

  19. Q. Xu, L. Hartmann, H. Schmidt, H. Hochmuth, M. Lorenz, R. Schmidt-Grund, C. Sturm, D. Spemann, M. Grundmann, and Y. Liu: Magnetoresistance and anomalous Hall effect in magnetic ZnO films. J. Appl. Phys. 101, 063918 (2007).

    Article  Google Scholar 

  20. R.P. Khosla and J.R. Fischer: Magnetoresistance in degenerate CdS: Localized magnetic moments. Phys. Rev. B 2, 4084–4097 (1970).

    Article  Google Scholar 

  21. Y-F. Tian, Y-F. Li, and T. Wu: Tuning magnetoresistance and exchange coupling in ZnO by doping transition metals. Appl. Phys. Lett. 99, 222503 (2011).

    Article  Google Scholar 

  22. M. He, Y.F. Tian, D. Springer, I.A. Putra, G.Z. Xing, E.E.M. Chia, S.A. Cheong, and T. Wu: Polaronic transport and magnetism in Ag-doped ZnO. Appl. Phys. Lett. 99, 222511 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Collaborative Research Center (SFB762) “Functionality of Oxide Interfaces”. We thank Dr. J. Barzola-Quiquia for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Lorite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorite, I., Esquinazi, P., Zapata, C. et al. Transport properties of hydrogenated ZnO microwires. Journal of Materials Research 29, 78–83 (2014). https://doi.org/10.1557/jmr.2013.219

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.219

Navigation