Skip to main content
Log in

Silver nanoparticles stabilized by bundled tungsten oxide nanowires with catalytic and antibacterial activities

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An in situ redox reaction was developed to synthesize bundled tungsten oxide (WO3@W18O49) ultrafine nanowires (BUNs) loaded with Ag nanoparticles using weakly reductive W18O49 and oxidative silver nitrate as precursor. However, due to the weak activation between the two reactants, redox just happened on the surface of W18O49, resulting in the formation of W18O49 coated with WO3 (here, we refer this structure to WOx simply), and the bulk phase of the composites retained the same pattern. Ag nanoparticles (<5 nm) with a narrow size distribution were obtained and immobilized onto WOx BUNs without any aggregation. The paper presented a systematic investigation on the Ag-WOx nanocomposite used as a catalyst for the reduction of p-nitrophenol and as an antibacterial agent against Escherichia coli. The remarkably enhanced performance may be ascribed to the moderate interaction of the small Ag-NPs and WOx BUNs with high specific surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
SCHEME 1.

Similar content being viewed by others

References

  1. J.D. Aiken and R.G. Finke: A review of modern transition-metal nanoclusters: Their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A: Chem. 145, 1 (1999).

    Article  CAS  Google Scholar 

  2. N. Toshima: Nanoscale Materials (Kluwer Academic Publishers, New York, 2003).

    Google Scholar 

  3. A.M. Signori, K.D.O. Santos, R. Eising, B.L. Albuquerque, F.C. Giacomelli, and J.B. Domingos: Formation of catalytic silver nanoparticles supported on branched polyethyleneimine derivatives. Langmuir 26(22), 17772 (2010).

    Article  CAS  Google Scholar 

  4. C-L. Yu, K. Yang, Y. Xie, Q-Z. Fan, J-M. Yu, Q. Shu, and C-Y. Wang: Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability. Nanoscale 5, 2142 (2013).

    Article  CAS  Google Scholar 

  5. E. Renato, M.S. Aline, F. Sébastien, and J.B. Domingos: Development of catalytically active silver colloid nanoparticles stabilized by dextran. Langmuir 27(19), 11860 (2011).

    Article  Google Scholar 

  6. D. Jana, A. Dandapat, and G. De: Anisotropic gold nanoparticle doped mesoporous boehmite films and their use as reusable catalysts in electron transfer reactions. Langmuir 26(14), 12177 (2010).

    Article  CAS  Google Scholar 

  7. K.D.O. Santos, W.C. Elias, A.M. Signori, F.C. Giacomelli, H. Yang, and J.B. Domingos: Synthesis and catalytic properties of silver nanoparticle-linear polyethylene imine colloidal systems. J. Phys. Chem. C 116(7), 4594 (2012).

    Article  CAS  Google Scholar 

  8. S.K. Deb: Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol. Energy Mater. Sol. Cells 92, 245 (2008).

    Article  CAS  Google Scholar 

  9. M. Shibuya and M. Miyauchi: Site-selective deposition of metal nanoparticles on aligned WO3 nanotrees for super-hydrophilic thin films. Adv. Mater. 21, 1373 (2009).

    Article  CAS  Google Scholar 

  10. L-F. Zhu, J-V. She, J-Y. Luo, S-Z. Deng, J. Chen, X-W. Ji, and N.S. Xu: Self-heated hydrogen gas sensors based on Pt-coated W18O49 nanowire networks with high sensitivity, good selectivity and low power consumption. Sens. Actuators, B 153, 354 (2011).

    Article  CAS  Google Scholar 

  11. M.S. Saha, M.N. Banis, Y. Zhang, R-Y. Li, X-L. Sun, M. Cai, and F.T. Wagner: Tungsten oxide nanowires grown on carbon paper as Pt electrocatalyst support for high performance proton exchange membrane fuel cells. J. Power Sources 192, 330 (2009).

    Article  CAS  Google Scholar 

  12. H-Y. Zhang, C-L. Huang, and R-T. Tao: One-pot solvothermal method to synthesize platinum/W18O49 ultrafine nanowires and their catalytic performance. J. Mater. Chem. 22(8), 3354 (2012).

    Article  CAS  Google Scholar 

  13. N. Pradhan, A. Pal, and T. Pal: Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf., A 196, 247 (2002).

    Article  CAS  Google Scholar 

  14. G-C. Xi, S-X. Ouyang, and P. Li: Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem. Int. Ed. 51(10), 2395 (2012).

    Article  CAS  Google Scholar 

  15. Y. Xie, K-L. Ding, Z-M. Liu, R-T. Tao, Z-Y. Sun, H-Y. Zhang, and G-M. An: In situ controllable loading of ultrafine noble metal particles on Titania. J. Am. Chem. Soc. 131(19), 6648 (2009).

    Article  CAS  Google Scholar 

  16. G-C. Xi, J-H. Ye, Q. Ma, N. Su, H. Bai, and C. Wang: In situ growth of metal particles on 3D urchin-like WO3 nanostructures. J. Am. Chem. Soc. 134(15), 6508 (2012).

    Article  CAS  Google Scholar 

  17. F-H. Lin and R.A. Doong: Bifunctional Au-Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J. Phys. Chem. C 115(14), 6591 (2011).

    Article  CAS  Google Scholar 

  18. Z-F. Jiang, J-M. Xie, and D-L. Jiang: Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction. CrystEngComm 15(3), 560 (2013).

    Article  CAS  Google Scholar 

  19. Z-F. Jiang, J-M. Xie, and D-L. Jiang: Facile route fabrication of nano-Ni core mesoporous-silica shell particles with high catalytic activity towards 4-nitrophenol reduction. CrystEngComm 14(14), 4601 (2012).

    Article  CAS  Google Scholar 

  20. Y. Zhao, Z-Q. Wang, X. Zhao, W. Li, and S-X. Liu: Antibacterial action of silver-doped activated carbon prepared by vacuum impregnation. Appl. Surf. Sci. 266, 67 (2013).

    Article  CAS  Google Scholar 

  21. X-T. Chang, S-B. Sun, and L-H. Dong: Efficient synthesis of Ag/AgCl/W18O49 nanorods and their antibacterial activities. Mater. Lett. 83, 133 (2012).

    Article  CAS  Google Scholar 

  22. Z-W. Deng, H-B. Zhu, B. Peng, H. Chen, Y-F. Sun, X-D. Gang, P-J. Jin, and J-L. Wang: Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities. ACS Appl. Mater. Interfaces 4(10), 5625 (2012).

    Article  CAS  Google Scholar 

  23. W-R. Li, X-B. Xie, Q-S. Shi, H-Y. Zeng, Y-S. Ouyang, and Y-B. Chen: Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85, 1115 (2010).

    Article  CAS  Google Scholar 

  24. C.N. Lok, C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K. Tam, J.F. Chiu, and C.M. Chen: Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteomics Res. 5, 916 (2006).

    Article  CAS  Google Scholar 

  25. M. Rai, A. Yadav, and A. Grade: Silver nanoparticles as a new generation of microbials. Biotechnol. Adv. 27, 76 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial supports of the National Natural Science Foundation (Grant No. 21003065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaomeng Lü or Jimin Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Lü, X., Wei, X. et al. Silver nanoparticles stabilized by bundled tungsten oxide nanowires with catalytic and antibacterial activities. Journal of Materials Research 29, 71–77 (2014). https://doi.org/10.1557/jmr.2013.217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.217

Navigation