Skip to main content
Log in

Crystallography and morphology of a lathy ferrite in Fe–Cr–Ni alloys during directional solidification

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The relationship between morphology and crystallography of an entangled lathy ferrite during directional solidification in Fe–Cr–Ni alloy has been investigated. During solidification, morphology of the lathy ferrite depends on the orientation relationship between the lathy ferrite and austenite. When the plane in the austenite substrate is (11̄1)γ, “Y-shaped” lathy ferrite grows in an entangled cluster and the orientation relationship between the lathy ferrite and austenite is the Nishiyama–Wassermann relationship. Lathy ferrite is preferentially elongated along <211>γ and <011>γ directions on (11̄1)γ plane due to lower misfit. The included angle among the “Y-shaped” lathy ferrite is about 120° because the angle between each pair of [211̄]γ, [1̄12]γ, and [1̄2̄1̄]γ crystal directions is equal to 120°. Formation mechanism of the perpendicular lathy ferrite has also been analyzed according to the relationship between <211>γ and <011>γ and <211>γ and <011>γ on (11̄1)γ and <011>γ plane. This indicates that required crystal morphology of the lathy ferrite in the solidified microstructure can be obtained by controlling the crystal plane of austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. K.H. Lo, C.H. Shek, and J.K.L. Lai: Recent developments in stainless steels. Mater. Sci. Eng., R 65, 39 (2009).

    Article  Google Scholar 

  2. J.A. Brooks and A.W. Thompson: Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. Int. Mater. Rev. 36, 16 (1991).

    Article  CAS  Google Scholar 

  3. A. Hunter and M. Ferry: Phase formation during solidification of AISI 304 austenitic stainless steel. Scr. Mater. 46, 253 (2002).

    Article  CAS  Google Scholar 

  4. K. Rajasekhar, C.S. Harendranath, R. Raman, and S.D. Kulkarni: Microstructural evolution during solidification of austenitic stainless steel weld metals: A color metallographic and electron microprobe analysis study. Mater. Charact. 38, 53 (1997).

    Article  CAS  Google Scholar 

  5. S.H. Kim, H.K. Moon, T. Kang, and C.S. Lee: Dissolution kinetics of delta ferrite in AISI 304 stainless steel produced by strip casting process. Mater. Sci. Eng., A 356, 390 (2003).

    Article  Google Scholar 

  6. D.M. Herlach: Non-equilibrium solidification of undercooled metallic melts. Mater. Sci. Eng., R 12, 177 (1994).

    Article  Google Scholar 

  7. Y.Q. Su, L.S. Luo, X.Z. Li, J.J. Guo, H.M. Yang, and H.Z. Fu: Well-aligned in situ composites in directionally solidified Fe-Ni peritectic system. Appl. Phys. Lett. 89, 231918 (2006).

    Article  Google Scholar 

  8. J.W. Fu, Y.S. Yang, and J.J. Guo: Formation of a blocky ferrite in Fe–Cr–Ni alloy during directional solidification. J. Cryst. Growth 311, 3661 (2009).

    Article  CAS  Google Scholar 

  9. U. Hecht, L. Gránásy, T. Pusztai, B. Böttger, M. Apel, V. Witusiewicz, L. Ratke, J. De Wilde, L. Froyen, D. Camel, B. Drevet, G. Faivre, S.G. Fries, B. Legendre, and S. Rex: Multiphase solidification in multicomponent alloys. Mater. Sci. Eng., R 46, 1 (2004).

    Article  Google Scholar 

  10. K. Edström, S. Ito, and J.O. Thomas: Crystal structure and charge compensation mechanisms in a barium potassium â-ferrite. J. Mater. Chem. 5, 995 (1995).

    Article  Google Scholar 

  11. S. Fukumoto, T. Okane, T. Umeda, and W. Kurz: Crystallographic relationships between δ-ferrite and γ-austenite during unidirectional solidification of Fe-Cr-Ni alloys. ISIJ Int. 40, 677 (2000).

    Article  CAS  Google Scholar 

  12. D. Baldissin and L. Battezzati: Multicomponent phase selection theory applied to high nitrogen and high manganese stainless steels. Scr. Mater. 55, 839 (2006).

    Article  CAS  Google Scholar 

  13. J.A. Brooks, J.C. Williams, and A.W. Thompson: STEM analysis of primary austenite solidified stainless steel welds. Metall. Trans. A 14, 23 (1983).

    Article  CAS  Google Scholar 

  14. J.M. Vitek, A. Dasgupta, and S.A. David: Microstructural modification of austenitic stainless steels by rapid solidification. Metall. Trans. A 14, 1833 (1983).

    Article  Google Scholar 

  15. J.A. Brooks, M.I. Baskes, and F.A. Greulich: Solidification modeling and solid-state transformations in high-energy density stainless steel welds. Metall. Trans. A 22, 915 (1991).

    Article  Google Scholar 

  16. V. Shankar, T.P.S. Gill, A.L.E. Terrance, S.L. Mannan, and S. Sundaresan: Relation between microstructure, composition, and hot cracking in Ti-stabilized austenitic stainless steel weldments. Metall. Trans. A 31, 3109 (2000).

    Article  Google Scholar 

  17. X. Lin, T.M. Yue, H.O. Yang, and W.D. Huang: Solidification behavior and the evolution of phase in laser rapid forming of graded Ti6Al4V-Rene88DT alloy. Metall. Trans. A 38, 127 (2007).

    Article  Google Scholar 

  18. J.W. Fu, Y.S. Yang, J.J. Guo, J.C. Ma, and W.H. Tong: Formation of two-phase coupled microstructure in AISI 304 stainless steel during directional solidification. J. Mater. Res. 24, 2385 (2009).

    Article  CAS  Google Scholar 

  19. J.W. Fu, Y.S. Yang, J.J. Guo, J.C. Ma, and W.H. Tong: Formation of a two-phase microstructure in Fe-Cr-Ni alloy during directional solidification. J. Cryst. Growth 311, 132 (2008).

    Article  CAS  Google Scholar 

  20. T.J. Headley and J.A. Brooks: A new bcc-fcc orientation relationship observed between ferrite and austenite in solidification structures of steels. Metall. Trans. A 33, 5 (2002).

    Article  Google Scholar 

  21. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki: The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 51, 1789 (2003).

    Article  CAS  Google Scholar 

  22. S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen: The morphology and crystallography of lath martensite in alloy steels. Acta Mater. 54, 5323 (2006).

    Article  CAS  Google Scholar 

  23. D. Qiu and W.Z. Zhang: A TEM study of the crystallography of austenite precipitates in a duplex stainless steel. Acta Mater. 55, 6754 (2007).

    Article  CAS  Google Scholar 

  24. M.A. Mangan, M.V. Kral, and G. Spanos: Correlation between the crystallography and morphology of proeutectoid Widmanstätten cementite precipitates. Acta Mater. 47, 4263 (1999).

    Article  CAS  Google Scholar 

  25. M.X. Zhang and P.M. Kelly: Crystallography and morphology of Widmanstätten cementite in austenite. Acta Mater. 46, 4617 (1998).

    Article  CAS  Google Scholar 

  26. G. Kurdjumov and G. Sachs: Über den Mechanismus der Stahlhärtung. Z. Phys. 64, 325 (1930).

    Article  Google Scholar 

  27. Z. Nishiyama: X-ray investigation of the mechanism of the transformation from face centered cubic lattice to body centered cubic. Science Reports of the Research Institutes, Tohoku University, Vol. 23 (1934), p. 637.

    CAS  Google Scholar 

  28. G. Wassermann: Einfluβ der α-γ-Umwandlung eines irreversiblen Nickelstahls auf Kristallorientierung und Zugfestigkeit. Arch. Eisenhüttenwes. 6, 347 (1933).

    Article  CAS  Google Scholar 

  29. W. Pitsch: The martensite transformation in thin foils of iron-nitrogen alloys. Philos. Mag. 4, 577 (1959).

    Article  Google Scholar 

  30. H.F. Zou, H.J. Yang, and Z.F. Zhang: Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals. Acta Mater. 56, 2649 (2008).

    Article  CAS  Google Scholar 

  31. J.W. Fu and Y.S. Yang: Orientational dependence of lathy ferrite in Fe-Cr-Ni alloy during directional solidification. Mater. Lett. 81, 177 (2012).

    Article  CAS  Google Scholar 

  32. G. Wulff: Zur frage der geschwindigkeit des wachstums und der auflösung von kristallflächen. Z. Kristallogr. 34, 449 (1901).

    CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China and Shanghai Baosteel Group Corporation (Grant No. 51004095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, J., Yang, Y. Crystallography and morphology of a lathy ferrite in Fe–Cr–Ni alloys during directional solidification. Journal of Materials Research 28, 2040–2046 (2013). https://doi.org/10.1557/jmr.2013.203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.203

Navigation