Skip to main content

Advertisement

Log in

Plasmonic Ag@SiO2 core/shell structure modified g-C3N4 with enhanced visible light photocatalytic activity

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High rate of charge carrier recombination is a critical factor limiting the photocatalytic activity of g-C3N4. In this contribution, we demonstrate that this issue can be alleviated by constructing a plasmonic photocatalyst with tailored plasmonic-metal nanostructures, i.e., core–shell-typed Ag@SiO2 nanoparticles. Compared with pure g-C3N4, the photocatalytic hydrogen production activity was enhanced by 63% for Ag@SiO2/g-C3N4. As analysis from the photoluminescence results, the enhancement could be attributed to that plasmonic nanostructures favored the separation of electron–hole pairs in the semiconductor due to localized surface plasmons resonance effect. It was found that the silica shell between the Ag nanoparticles and g-C3N4 was essential for the better photocatalytic activity of Ag@SiO2/g-C3N4 than that of Ag/g-C3N4 by limiting the energy-loss Förster energy transfer process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. X-B. Chen, S-H. Shen, L-J. Guo, and S-S. Mao: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503 (2010).

    Article  CAS  Google Scholar 

  2. S-H. Shen, J-W. Shi, P-H. Guo, and L-J. Guo: Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials. Int. J. Nanotechnol. 8, 525 (2011).

    Article  Google Scholar 

  3. J-W. Shi and L-J. Guo: ABO3-based photocatalysts for water splitting. Prog. Nat. Sci. Mater. Int. 22, 592 (2012).

    Article  Google Scholar 

  4. F.E. Osterloh: Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20, 36 (2007).

    Google Scholar 

  5. L. Zhang: Energy Efficiency and Renewable Energy Through Nanotechnology (Springer, London, 2011), pp. 487, 529

    Book  Google Scholar 

  6. K. Maeda and K. Domen: Oxynitride materials for solar water splitting. MRS Bull. 36, 25 (2011).

    Article  CAS  Google Scholar 

  7. X-C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, and M. Antonietti: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 77 (2008).

    Google Scholar 

  8. X-C. Wang, S. Blechert, and M. Antonietti: Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal. 2, 1596 (2012).

    Article  Google Scholar 

  9. Y. Wang, X. Bai, C. Pan, J. He, and Y. Zhu: Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4. J. Mater. Chem. 22, 11568 (2012).

    Article  CAS  Google Scholar 

  10. H-W. Kang, S-N. Lim, D. Song, and S-B. Park: Organic-inorganic composite of g-C3N4―SrTiO3: Rh photocatalyst for improved H2 evolution under visible light irradiation. Int. J. Hydrogen Energy 37, 11602 (2012).

    Article  CAS  Google Scholar 

  11. L. Sun, X. Zhao, C-J. Jia, Y. Zhou, X. Cheng, P. Li, L. Liu, and W-L. Fan: Enhanced visible-light photocatalytic activity of g-C3N4–ZnWO4 by fabricating a heterojunction: Investigation based on experimental and theoretical studies. J. Mater. Chem. 22, 23428 (2012).

    Article  CAS  Google Scholar 

  12. L. Ge, C. Han, and J. Liu: Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl. Catal., B. 108–109, 100 (2011).

    Article  Google Scholar 

  13. X. Lu, Q. Wang, and D. Cui: Preparation and photocatalytic properties of g-C3N4/TiO2 hybrid composite. J. Mater. Sci. Technol. 26, 925 (2010).

    Article  CAS  Google Scholar 

  14. H. Yan and H. Yang: TiO2/g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J. Alloys Compd. 509, 26 (2011).

    Article  Google Scholar 

  15. Y. Wang, R. Shi, J. Lin, and Y. Zhu: Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ. Sci. 4, 2922 (2011).

    Article  CAS  Google Scholar 

  16. J-X. Sun, Y-P. Yuan, L-G. Qiu, X. Jiang, A-J. Xie, Y-H. Shen, and J-F. Zhu: Fabrication of composite photocatalyst g-C3N4–ZnO and enhancement of photocatalytic activity under visible light. Dalton Trans. 41, 6756 (2012).

    Article  CAS  Google Scholar 

  17. S-C. Yan, S-B. Lv, Z-S. Li, and Z-G. Zou: Organic–inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans. 39, 1488 (2010).

    Article  CAS  Google Scholar 

  18. J. Zhang, M. Zhang, R-Q. Sun, and X-C. Wang: A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem. 124, 10292 (2012).

    Article  Google Scholar 

  19. Y. Di, X-C. Wang, A. Thomas, and M. Antonietti: Making metal-carbon nitride heterojunctions for improved photocatalytic hydrogen evolution with visible light. ChemCatChem 2, 834 (2010).

    Article  CAS  Google Scholar 

  20. K. Maeda, X-C. Wang, Y. Nishihara, D. Lu, M. Antonietti, and K. Domen: Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J. Phys. Chem. C. 113, 4940 (2009).

    Article  CAS  Google Scholar 

  21. P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, and M-H. Whangbo: Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Ed. 47, 7931 (2008).

    Article  CAS  Google Scholar 

  22. P. Wang, B. Huang, X. Zhang, X. Qin, Y. Dai, Z. Wang, and Z. Lou: Highly efficient visible light plasmonic photocatalysts Ag@Ag(Cl,Br) and Ag@AgCl-AgI. ChemCatChem 3, 360 (2011).

    Article  Google Scholar 

  23. Q. Zhang, D-Q. Lima, I. Lee, F. Zaera, M. Chi, and Y. Yin: A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew. Chem. Int. Ed. 123, 7226 (2011).

    Article  Google Scholar 

  24. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe: A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 130, 1676 (2008).

    Article  CAS  Google Scholar 

  25. D.B. Ingram and S. Linic: Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 133, 5202 (2011).

    Article  CAS  Google Scholar 

  26. P.Y. Silvert, R. Herrera-Urbina, and K. Tekaia-Elhsissen: Preparation of colloidal silver dispersions by the polyolprocess. J. Mater. Chem. 7, 293 (1997).

    Article  CAS  Google Scholar 

  27. T. Gao, B.P. Jelle, and A. Gustavsen: Core–shell-typed Ag@SiO2 nanoparticles as solar selective coating materials. J. Nanopart. Res. 15, 1 (2013).

    CAS  Google Scholar 

  28. D. Kim, S. Jeong, and J. Moon: Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 17, 4019 (2006).

    Article  CAS  Google Scholar 

  29. C. Graf, D.L. Vossen, A. Imhof, and A. van Blaaderen: A general method to coat colloidal particles with silica. Langmuir 19, 6693 (2003).

    Article  CAS  Google Scholar 

  30. S.C. Warren and E. Thimsen: Plasmonic solar water splitting. Energy Environ. Sci. 5, 5133 (2012).

    Article  CAS  Google Scholar 

  31. W. Xu, X. Liu, J. Ren, P. Zhang, Y. Wang, Y-G. Guo, Y. Guo, and G. Lu: A novel mesoporous Pd/cobalt aluminate bifunctional catalyst for aldol condensation and following hydrogenation. Catal. Commun. 11, 721 (2010).

    Article  CAS  Google Scholar 

  32. Z. Zhao, X. Lin, R. Jin, Y. Dai, and G. Wang: High catalytic activity in CO PROX reaction of low cobalt-oxide loading catalysts supported on nano-particulate CeO2–ZrO2 oxides. Catal. Commun. 12, 1448 (2011).

    Article  CAS  Google Scholar 

  33. B.J. Wiley, S.H. Im, Z-Y. Li, J. McLellan, A. Siekkinen, and Y-N. Xia: Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B. 110, 15666 (2006).

    Article  CAS  Google Scholar 

  34. S. Linic, P. Christopher, and D.B. Ingram: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911 (2011).

    Article  CAS  Google Scholar 

  35. P. Niu, L. Zhang, G. Liu, and H-M. Cheng: Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22, 4763 (2012).

    Article  CAS  Google Scholar 

  36. S. Barman and M. Sadhukhan: Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J. Mater. Chem. 22, 21832 (2012).

    Article  CAS  Google Scholar 

  37. J.R. Lakowicz: Principles of Fluorescence Spectroscopy (Springer, London, 2009).

    Google Scholar 

  38. Y. Meng, J. Shen, D. Chen, and G. Xin: Photodegradation performance of methylene blue aqueous solution on Ag/g-C3N4 catalyst. Rare Met. 30, 276 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Grant Nos. 51102194 and 51121092) and National Basic Research Program of China (Grant No. 2009CB220000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaohua Shen or Liejin Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Shen, S., Guo, P. et al. Plasmonic Ag@SiO2 core/shell structure modified g-C3N4 with enhanced visible light photocatalytic activity. Journal of Materials Research 29, 64–70 (2014). https://doi.org/10.1557/jmr.2013.200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.200

Navigation