Skip to main content
Log in

Unusual oxidation behavior of light metal hydride by tetrahydrofuran solvent molecules confined in ordered mesoporous carbon

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Confining light metal hydrides in micro- or mesoporous scaffolds is considered to be a promising way to overcome the existing challenges for these materials, e.g. their application in hydrogen storage. Different techniques exist which allow us to homogeneously fill pores of a host matrix with the respective hydride, thus yielding well defined composite materials. For this report, the ordered mesoporous carbon CMK-3 was taken as a support for LiAlH4 realized by a solution impregnation method to improve the hydrogen desorption behavior of LiAlH4 by nanoconfinement effects. It is shown that upon heating, LiAlH4 is unusually oxidized by coordinated tetrahydrofuran solvent molecules. The important result of the herein described work is the finding of a final composite containing nanoscale aluminum oxide inside the pores of the CMK-3 carbon host instead of a metal or alloy. This newly observed unusual oxidation behavior has major implications when applying these compounds for the targeted synthesis of homogeneous metal–carbon composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.
FIG. 4.
TABLE II.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. A. Andreasen, T. Vegge, and A.S. Pedersen: Dehydrogenation kinetics of as-received and ball-milled LiAlH4. J. Solid State Chem. 178, 3672 (2005).

    Article  CAS  Google Scholar 

  2. J. Gao, P. Adelhelm, M.H.W. Verkuijlen, C. Rongeat, M. Herrich, P.J.M. Van Bentum, O. Gutfleisch, A.P.M. Kentgens, K.P. De Jong, and P.E. De Jongh: Confinement of NaAlH4 in nanoporous carbon: Impact on H2 release, reversibility, and thermodynamics. J. Phys. Chem. C 114, 4675 (2010).

    Article  CAS  Google Scholar 

  3. P. Adelhelm and P.E. de Jongh: The impact of carbon materials on the hydrogen storage properties of light metal hydrides. J. Mater. Chem. 21, 2417 (2011).

    Article  CAS  Google Scholar 

  4. C.P. Baldé, B.P.C. Hereijgers, J.H. Bitter, and K.P. de Jong: Facilitated hydrogen storage in NaAlH4 supported on carbon nanofibers. Angew. Chem. Int. Ed. 45, 3501 (2006).

    Article  CAS  Google Scholar 

  5. A. Züttel, P. Wenger, P. Sudan, P. Mauron, and S. Orimo: Hydrogen density in nanostructured carbon, metals and complex materials. Mater. Sci. Eng., B 108, 9 (2004).

    Article  CAS  Google Scholar 

  6. R.K. Bhakta, J.L. Herberg, B. Jacobs, A. Highley, R. Behrens, N.W. Ockwig, J.A. Greathouse, and M.D. Allendorf: Metal-organic frameworks as templates for nanoscale NaAlH4. J. Am. Chem. Soc. 131, 13198 (2009).

    Article  CAS  Google Scholar 

  7. V. Stavila, R.K. Bhakta, T.M. Alam, E.H. Majzoub, and M.D. Allendorf: Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor. ACS Nano 74, 9807 (2012).

    Article  CAS  Google Scholar 

  8. S-I. Orimo, Y. Nakamori, J.R. Eliseo, A. Züttel, and C.M. Jensen: Complex hydrides for hydrogen storage. Chem. Rev. 107, 4111 (2007).

    Article  CAS  Google Scholar 

  9. W. Lohstroh, A. Roth, H. Hahn, and M. Fichtner: Thermodynamic effects in nanoscale NaAlH4. Chem. Phys. Chem. 11, 789 (2010).

    Article  CAS  Google Scholar 

  10. C.P. Baldé, B.P.C. Hereijgers, J.H. Bitter, and K.P. de Jong: Sodium alanate nanoparticles-linking size to hydrogen storage properties. J. Am. Chem. Soc. 130, 6761 (2008).

    Article  CAS  Google Scholar 

  11. Y. Li, G. Zhou, F. Fang, X. Yu, Q. Zhang, L. Ouyang, M. Zhu, and D. Sun: De-/re-hydrogenation features of NaAlH4 confined exclusively in nanopores. Acta Mater. 59, 1829 (2011).

    Article  CAS  Google Scholar 

  12. P.E. de Jongh and P. Adelhelm: Nanosizing and nanoconfinement: New strategies towards meeting hydrogen storage goals. ChemSusChem 3, 1332 (2010).

    Article  CAS  Google Scholar 

  13. J. Gao, P. Ngene, I. Lindemann, O. Gutfleisch, K.P. de Jong, and P.E. de Jongh: Enhanced reversibility of H2 sorption in nanoconfined complex metal hydrides by alkali metal addition. J. Mater. Chem. 22, 13209 (2012).

    Article  CAS  Google Scholar 

  14. P. Adelhelm, J. Gao, M.H.W. Verkuijlen, C. Rongeat, M. Herrich, P.J.M. van Bentum, O. Gutfleisch, A.P.M. Kentgens, K.P. de Jong, and P.E. de Jongh: Comprehensive study of melt infiltration for the synthesis of NaAlH4/C nanocomposites. Chem. Mater. 22, 2233 (2010).

    Article  CAS  Google Scholar 

  15. M. Felderhoff, C. Weidenthaler, R. von Helmolt, and U. Eberle: Hydrogen storage: The remaining scientific and technological challenges. Phys. Chem. Chem. Phys. 9, 2643 (2007).

    Article  CAS  Google Scholar 

  16. X-F. Lei and J-X. Ma: Synthesis and electrochemical performance of aluminum based composites. J. Braz. Chem. Soc. 21, 209 (2010).

    Article  CAS  Google Scholar 

  17. C-M. Park and H-J. Sohn: Novel antimony/aluminum/carbon nanocomposite for high-performance rechargeable lithium batteries. Chem. Mater. 20, 3169 (2008).

    Article  CAS  Google Scholar 

  18. A. Chandrasoma, R. Grant, A.E. Bruce, and M.R.M. Bruce: Electrochemical polymerization of aniline on carbon–aluminum electrodes for energy storage. J. Power Sources 219, 285 (2012).

    Article  CAS  Google Scholar 

  19. E.C. Ashby, G.J. Brendel, and H.E. Redman: Direct synthesis of complex metal hydrides. Inorg. Chem. 2, 499 (1963).

    Article  CAS  Google Scholar 

  20. E.C. Ashby, F.R. Dobbs, and H.P. Hopkins: Composition of complex aluminum hydrides and borohydrides, as inferred from conductance, molecular association, and spectroscopic studies. J. Am. Chem. Soc. 95, 2823 (1972).

    Article  Google Scholar 

  21. J. Wang, A.D. Ebner, and J.A. Ritter: Physiochemical pathway for cyclic dehydrogenation and rehydrogenation of LiAlH4. J. Am. Chem. Soc. 128, 5949 (2006).

    Article  CAS  Google Scholar 

  22. S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, and O. Terasaki: Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 122, 10712 (2000).

    Article  CAS  Google Scholar 

  23. K. Pinkert, L. Giebeler, M. Herklotz, S. Oswald, J. Thomas, A. Meier, L. Borchardt, S. Kaskel, H. Ehrenberg, and J. Eckert: Functionalised porous nanocomposites: A multidisciplinary approach to investigate designed structures for supercapacitor applications. J. Mater. Chem. A 1, 4904 (2013).

    Article  CAS  Google Scholar 

  24. S. Oswald, K. Nikolowski, and H. Ehrenberg: Quasi in situ XPS investigations on intercalation mechanisms in Li-ion battery materials. Anal. Bioanal. Chem. 393, 1871 (2009).

    Article  CAS  Google Scholar 

  25. S. Oswald, K. Nikolowski, and H. Ehrenberg: XPS investigations of valence changes during cycling of LiCrMnO4-based cathodes in Li-ion batteries. Surf. Interface Anal. 42, 916 (2010).

    Article  CAS  Google Scholar 

  26. L. Himakumar, B. Viswanathan, and S. Srinivasamurthy: Dehydriding behaviour of LiAlH4—the catalytic role of carbon nanofibres. Int. J. Hydrogen Energy 33, 366 (2008).

    Article  CAS  Google Scholar 

  27. J. Graetz, J. Wegrzyn, and J.J. Reilly: Regeneration of lithium aluminum hydride. J. Am. Chem. Soc. 130, 17790 (2008).

    Article  CAS  Google Scholar 

  28. M. Dampc, E. Szymańska, B. Mielewska, and M. Zubek: Ionization and ionic fragmentation of tetrahydrofuran molecules by electron collisions. J. Phys. B: At. Mol. Opt. Phys. 44, 055206 (2011).

    Article  CAS  Google Scholar 

  29. P.M. Mayer, M.F. Guest, L. Cooper, L.G. Shpinkova, E.E. Rennie, D.M.P. Holland, and D.A. Shaw: Does tetrahydrofuran ring open upon ionization and dissociation? A TPES and TPEPICO investigation. J. Phys. Chem. A 113, 10923 (2009).

    Article  CAS  Google Scholar 

  30. Y.J. Choi, J. Lu, Y. Sohn, Z.Z. Fang, C. Kim, R.C. Bowman, and S. Hwang: Reaction mechanisms in the Li3AlH6/LiBH4 and Al/LiBH4 systems for reversible hydrogen storage. Part 2: Solid-state NMR studies. J. Phys.Chem. C 115, 6048 (2011).

    Article  CAS  Google Scholar 

  31. M.H.W. Verkuijlen, D. Gelder, P.J.M. Van Bentum, and A.P.M. Kentgens: Oxidation products of NaAlH4 studied by solid-state NMR and X-ray diffraction. J. Phys.Chem. C 115, 7002 (2011).

    Article  CAS  Google Scholar 

  32. J.L. Herberg, R.S. Maxwell, and E.H. Majzoub: 27Al and 1H MAS NMR and 27Al multiple quantum studies of Ti-doped NaAlH4. J. Alloys Compd. 417, 39 (2006).

    Article  CAS  Google Scholar 

  33. E.H. Majzoub, J.L. Herberg, R. Stumpf, S. Spangler, and R.S. Maxwell: XRD and NMR investigation of Ti-compound formation in solution-doping of sodium aluminum hydrides: Solubility of Ti in NaAlH4 crystals grown in THF. J. Alloys Compd. 394, 265 (2005).

    Article  CAS  Google Scholar 

  34. K.D. Moulder, J.F. Stickle, W.F. Sobol, and P.E. Bomben: Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp., Eden Prairie, MN, 1992).

    Google Scholar 

  35. P.B. Amama, J.T. Grant, P.J. Shamberger, A.A. Voevodin, and T.S. Fisher: Improved dehydrogenation properties of Ti-doped LiAlH4: Role of Ti precursors. J. Phys. Chem. C 116, 21886 (2012).

    Article  CAS  Google Scholar 

  36. G.P. Lopez, D.G. Castner, and B.D. Ratner: XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surf. Interface Anal. 17, 267 (1991).

    Article  CAS  Google Scholar 

  37. K. Kanamura, H. Tamura, and Z. Takehara: XPS analysis of a lithium surface immersed in propylene carbonate solution containing various salts. J. Electroanal. Chem. 333, 127 (1992).

    Article  CAS  Google Scholar 

  38. A. Andersson, A. Henningson, H. Siegbahn, U. Jansson, and K. Edström: Electrochemically lithiated graphite characterised by photoelectron spectroscopy. J. Power Sources 119–121, 522 (2003).

    Article  CAS  Google Scholar 

  39. J. Clayden and S.A. Yasin: Pathways for decomposition of THF by organolithiums: The role of HMPA. New J. Chem. 26, 191 (2002).

    Article  CAS  Google Scholar 

  40. K. Wang and P.N. Ross: XPS and UPS characterization of the reactions of Al(111) with tetrahydrofuran and propylene carbonate. Surf. Sci. 365, 753 (1996).

    Article  CAS  Google Scholar 

  41. D. Lacina, L. Yang, I. Chopra, J. Muckerman, Y. Chabal, and J. Graetz: Investigation of LiAlH4-THF formation by direct hydrogenation of catalyzed Al and LiH. Phys. Chem. Chem. Phys. 14, 6569 (2012).

    Article  CAS  Google Scholar 

  42. D.E. Bikiel, F. Di Salvo, M.C. González Lebrero, F. Doctorovich, and D.A. Estrin: Solvation and structure of LiAlH(4) in ethereal solvents. Inorg. Chem. 44, 5286 (2005).

    Article  CAS  Google Scholar 

  43. S.K. Maity, L. Flores, J. Ancheyta, and H. Fukuyama: Carbon-modified alumina and alumina-carbon-supported hydrotreating catalysts. Ind. Eng. Chem. Res. 48, 1190 (2009).

    Article  CAS  Google Scholar 

  44. J. Khom-in, P. Praserthdam, J. Panpranot, and O. Mekasuwandumrong: Dehydration of methanol to dimethyl ether over nanocrystalline Al2O3 with mixed γ- and χ-crystalline phases. Catal. Commun. 9, 1955 (2008).

    Article  CAS  Google Scholar 

  45. Q. Hao, Y. Zhao, H. Yang, Z. Liu, and Z. Liu: Alumina grafted to SBA-15 in supercritical CO2 as a support of cobalt for Fischer − Tropsch synthesis. Energy Fuels 26, 6567 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the EU (ERSF) and the Free State of Saxony (SAB Grant No. 14227/2337) within the ADDE—Functional structure design of new high performance materials via atomic design and defect engineering (Grant No. 14227/2337) and the European Center for Emerging Materials and Processes Dresden (ECEMP) excellence clusters B1 and D2 (SAB Grant Nos. 100112628 and 100111670) for financial support. The German Federal Ministry of Education and Research (BMBF) is acknowledged for financial support (Grant No. 03KP801) for the JEOL JAMP-9500F auger electron spectrometer. The authors furthermore thank U. Georgi and R.R. Rottenkügler for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Klose.

Supplementary Material

Supplementary Material

Supplementary materials can be viewed in this issue of the Journal of Materials Research by visiting u]http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klose, M., Lindemann, I., Minella, C.B. et al. Unusual oxidation behavior of light metal hydride by tetrahydrofuran solvent molecules confined in ordered mesoporous carbon. Journal of Materials Research 29, 55–63 (2014). https://doi.org/10.1557/jmr.2013.199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.199

Navigation