Wet-chemical preparation of digold bismuthide, gold diantimonide, and gold ditelluride particles


The intermetallic materials digold bismuthide, gold diantimonide, and gold ditelluride were chemically synthesized with a bottom-up wet chemical approach, which has not been achieved before. These gold-based materials display a nano- to microparticle grain size and a well-defined composition-based structure. True intermetallic nanoparticle-based materials have traditionally proven challenging to obtain via wet chemical approaches, making the materials created here significant from a fundamental synthesis standpoint. The knowledge gained by developing reliable synthesis approaches toward intermetallic nanoparticles may be used to develop new materials and enhance the understanding of how to refine the characteristics and enhanced properties of emerging nanoparticle semiconductor materials in advanced applications such as for thermoelectrics.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.


  1. 1.

    Y. Zhang, H. Wang, S. Kraemer, Y. Shi, F. Zhang, M. Snedaker, K. Ding, M. Moskovits, G.J. Snyer, and G.D. Stucky: Surfactant-free synthesis of Bi2Te3-Te micro-nano heterostructure with enhanced thermoelectric figure of merit. ACS Nano 5, 3158 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, and H. Weller: Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Adv. Funct. Mater. 19, 3476 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    Y. Zhao, J.S. Dyck, B.M. Hernandez, and C. Burda: Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. J. Am. Chem. Soc. 132, 4982 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    J. Chen, T. Sun, D.H. Sim, H. Peng, H. Wang, S. Fan, H.H. Hng, J. Ma, F.Y.C. Boey, S. Li, M.K. Samani, G.C.K. Chen, X. Chen, T. Wu, and Q. Yan: Sb2Te3 nanoparticles with enhanced Seebeck coefficient and low thermal conductivity. Chem. Mater. 22, 3086 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    D. Mott, N.T. Mai, N.T.B. Thuy, Y. Maeda, T.P.T. Linh, M. Koyano, and S. Maenosono: Bismuth, antimony and tellurium alloy nanoparticles with controllable shape and composition for efficient thermoelectric devices. Phys. Status Solidi A 208, 52 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    N.T. Mai, D. Mott, N.T.B. Thuy, I. Osaka, and S. Maenosono: Study on formation mechanism and ligand-directed architectural control of nanoparticles composed of Bi, Sb and Te: Towards one-pot synthesis of ternary (Bi, Sb)2Te3 nanobuilding blocks. RSC Adv. 1, 1089 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    K. Biswas, J. He, I.D. Blum, C. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    L. Wang, J. Luo, M.J. Schadt, and C.J. Zhong: Thin film assemblies of molecularly-linked metal nanoparticles and multifunctional properties. Langmuir 26, 618 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    M.M. Maye, J. Luo, I.S. Lim, L. Han, N.N. Kariuki, D. Rabinovich, T. Lu, and C.J. Zhong: Size-controlled assembly of gold nanoparticles induced by a tridentate thioether ligand. J. Am. Chem. Soc. 125, 9906 (2003).

    CAS  Article  Google Scholar 

  10. 10.

    J.P. Vaughan: The process mineralogy of gold: The classification of ore types. JOM 56, 46 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    A. Charoenphakdee, K. Kurosaki, A. Harnwunggmoung, H. Muta, and S. Yamanaka: Thermoelectric properties of gold telluride: AuTe2. J. Alloys Compd. 496, 53 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Reference data taken from the International Centre for Diffraction Data database 2013, card number 03-065-3093.

  13. 13.

    Reference data taken from the International Centre for Diffraction Data database 2013, card number 00-008-0460.

  14. 14.

    Reference data taken from the International Centre for Diffraction Data database 2013, card number 03-065-2307.

  15. 15.

    I.S. Lim, D. Mott, M.H. Engelhard, Y. Pan, S. Kamodia, J. Luo, P.N. Njoki, S. Zhou, L. Wang, and C-J. Zhong: Interparticle chiral recognition of enantiomers: A nanoparticle-based recognition strategy. Anal. Chem. 81, 689 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    NIST X-ray Photoelectron Spectroscopy Database, Version 4.1 (National Institute of Standards and technology, Gaithersburg, 2012), http://srdata.nist.gov/xps/.

  17. 17.

    W.D. Schneider and C. Laubschat: Actinide-noble-metal systems: An X-ray-photoelectron-spectroscopy study of thorium-platinum, uranium-platinum, and uranium-gold intermetallics. Phys. Rev. B 23, 997 (1981).

    CAS  Article  Google Scholar 

  18. 18.

    P.M. Van Attekum and J.M. Trooster: Bulk- and surface-plasmon-loss intensities in photoelectron, auger, and electron-energy-loss spectra of Mg metal. Phys. Rev. B 20, 2335 (1979).

    Article  Google Scholar 

  19. 19.

    T.P. Debies and J.W. Rabalais: X-ray photoelectron spectra and electronic structure of Bi2X3 (X=O, S, Se, Te). Chem. Phys. 20, 277 (1977).

    CAS  Article  Google Scholar 

  20. 20.

    T.K. Sham, M.L. Perlman, and R.E. Watson: Electronic behavior in alloys: Gold-non-transition-metal intermetallics. Phys. Rev. B 19, 539 (1979).

    CAS  Article  Google Scholar 

  21. 21.

    E.V. Benvenutti, Y. Gushikem, A. Vasquez, S.C. de Castro, and G.A.P. Zaldivar: X-ray photoelectron spectroscopy and mössbauer spectroscopy study of iron(III) and antimony(V) oxides grafted onto a silica gel surface. J. Chem. Soc., Chem. Commun. 19, 1325 (1991).

    Article  Google Scholar 

  22. 22.

    A.B. Christie, I. Sutherland, and J.M. Walls: Studies of the composition, ion-induced reduction and preferential sputtering of anodic oxide films on Hg0.8Cd0.2Te by XPS. Surf. Sci. 135, 225 (1983).

    CAS  Article  Google Scholar 

  23. 23.

    C.A. Young and G.H. Luttrell: Separation Technologies for Minerals, Coal, and Earth Resources, Society for Mining, Metallurgy, and Exploration, Inc (SME, Englewood, CO, 2012).

    Google Scholar 

Download references


This work was supported by the Grant-in-Aid for Scientific Research (C) and partly by the Comprehensive Support Programs for Creation of Regional Innovation: “Practical Application Research.”

Author information



Corresponding author

Correspondence to Derrick M. Mott.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sakata, T., Mott, D.M. & Maenosono, S. Wet-chemical preparation of digold bismuthide, gold diantimonide, and gold ditelluride particles. Journal of Materials Research 28, 2106–2112 (2013). https://doi.org/10.1557/jmr.2013.196

Download citation