Skip to main content
Log in

Facile synthesis of hydrodynamic solid lubricant MoS2 from molybdenum trioxide nanorods

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Molybdenum trioxide nanostructures were synthesized, to make highly friction resistant molybdenum disulfide, by low temperature hydrothermal reaction without using any template or catalyst. The as-synthesized materials were sulfided with H2S at 400 and 800 °C. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier-transform infra-red spectroscopy, and thermogravimetric analysis were used for the physical characterization of the materials. The oxide material is highly crystalline with unique morphology. The factors affecting the size and shape of the synthesized materials were studied in detail. The crystalline nature of the materials decreased after the sulfidation process at 800 °C without any change in morphology. The wear resistance and lubricity of the material were studied under harsh conditions. The comparative study of these materials with MoS2 prepared by the hard templating method (using mesoporous silica template) reveals that the new material synthesized by direct hydrothermal route is pure phase and has better wear resistance and antifriction properties. Ultra high stability of the material is the most distinguished property of the material synthesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. Z.X. Song, N. Minura, J.J. Bravo-Suaroz, T. Akita, S. Tsubota, and S.T. Oyama: Gas-phase epoxidation of propylene through radicals generated by silica-supported molybdenum oxide. Appl. Catal., A 316, 142 (2007).

    Article  CAS  Google Scholar 

  2. F. Wang and W. Ueda: Nanostructured molybdenum oxides and their catalytic performance in the alkylation of arenes. Chem. Commun. 0, 3196 (2008).

    Article  Google Scholar 

  3. L. Cheng, M.W. Shao, X.H. Wang, and H.B. Hu: Single-crystalline molybdenum trioxide nanoribbons: Photocatalytic, photoconductive, and electrochemical properties. Chem. Eur. J. 15, 2310 (2009).

    Article  CAS  Google Scholar 

  4. E. Comini, L. Yubao, Y. Brando, and G. Sberveglieri: Gas sensing properties of MoO3 nanorods to CO and CH3OH. Chem. Phys. Lett. 407, 368 (2005).

    Article  CAS  Google Scholar 

  5. X. Huang, Z. Zeng, and H. Zhang: Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 42, 1934 (2013).

    Article  CAS  Google Scholar 

  6. N.J. Imonishi, K. Kanamura, and Z. Takehara: Synthesis of MoS2 thin film by chemical vapor deposition method and discharge characteristics as a cathode of the lithium secondary battery. J. Electrochem. Soc. 139, 2082 (1992).

    Article  Google Scholar 

  7. D. Sun, W. Lu, D. Le, Q. Ma, M. Aminpour, M.A. Ortigoza, S. Bobek, J. Mann, J. Wyrick, T.S. Rahman, and L. Bartels: An MoSx structure with high affinity for adsorbate interaction. Angew. Chem. Int. Ed. 51, 10284 (2012).

    Article  CAS  Google Scholar 

  8. V.M. Mohan, H. Bin, and W. Chen: Enhancement of electrochemical properties of MoO3 nanobelts electrode using PEG as surfactant for lithium battery. J. Solid State Electrochem. 14, 1769 (2010).

    Article  Google Scholar 

  9. S.M. Paek, J.H. Kang, H. Jung, S.J. Hwang, and J.H. Choy: Enhanced lithium storage capacity and cyclic performance of nanostructured TiO2–MoO3 hybrid electrode. Chem. Commun. 48, 7536 (2009).

    Article  Google Scholar 

  10. X. Zhang, B. Luster, A. Church, C. Muratore, A.A. Voevodin, P. Kohli, S. Aouadi, and S. Talapatra: Carbon nanotube-MoS2 composites as solid lubricants. Appl. Mater. Interface 1, 735 (2009).

    Article  CAS  Google Scholar 

  11. R. Rosentsveig, A. Margolin, A. Gorodnev, R. Popovitz-Biro, Y. Feldman, L. Rapoport, Y. Novema, G. Naveh, and R. Tenne: Synthesis of fullerene-like MoS2 nanoparticles and their tribological behavior. J. Mater. Chem. 19, 4368 (2009).

    Article  CAS  Google Scholar 

  12. V.G. Pol, S.V. Pol, and A. Gedanken: Micro to nano conversion: A one-step, environmentally friendly, solid state, bulk fabrication of WS2 and MoS2 nanoplates. Cryst. Growth Des. 8, 1126 (2008).

    Article  CAS  Google Scholar 

  13. A. Zak, Y. Feldman, V. Lyakhovitskaya, G. Leitus, R. Popovitz-Biro, E. Wachtel, H. Cohen, S. Reich, and R. Tenne: Alkali metal intercalated fullerene-like MS2 (M = W, Mo) nanoparticles and their properties. J. Am. Chem. Soc. 124, 4747 (2002).

    Article  CAS  Google Scholar 

  14. M. Remskar, Z. Skraba, P. Stadelmann, and F. Levy: Structural stabilization of new compounds: MoS2 and WS2 micro- and nanotubes alloyed with gold and silver. Adv. Mater. 12, 814 (2000).

    Article  CAS  Google Scholar 

  15. M. Chhowalla, A. Gehan, and J. Amaratunga: Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407, 164 (2000).

    Article  CAS  Google Scholar 

  16. B. Hu, L. Mai, W. Chen, and F. Yang: From MoO3 nanobelts to MoO2 nanorods: Structure transformation and electrical transport. ACS Nano 3, 478 (2009).

    Article  CAS  Google Scholar 

  17. Z. Wang, H. Wang, C. Yang, and J. Wu: Synthesis of molybdenum oxide hollow microspheres by ethanol and PEG assisting hydrothermal process. Mater. Lett. 64, 2170 (2010).

    Article  CAS  Google Scholar 

  18. T. Xia, Q. Li, X. Liu, J. Meng, and X. Cao: Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide. J. Phys. Chem. B 110, 2006 (2006).

    Article  CAS  Google Scholar 

  19. Y. Tian, X. Zhao, L. Shen, F. Meng, L. Tang, Y. Deng, and Z. Wang: Synthesis of amorphous MoS2 nanospheres by hydrothermal reaction. Mater. Lett. 60, 527 (2006).

    Article  CAS  Google Scholar 

  20. M. Bar-Sadan, A.N. Enyashin, S. Gemming, R. Popovitz-Biro, S.Y. Hong, P. Yehiam, R. Tenne, and G. Seifert: Structure and stability of molybdenum sulfide fullerenes. J. Phys. Chem. B 110, 25399 (2006).

    Article  CAS  Google Scholar 

  21. Z.H. Wen, Q. Wang, and J.H. Li: Electrochemical behavior of -MoO3 nanorods as cathode materials for rechargeable lithium batteries. Nanosci. Nanotechnol. 6, 2117 (2006).

    CAS  Google Scholar 

  22. F. Dury, V. Misplon, and E.M. Gaigneaux: Probing the reduction state of Mo oxide catalysts by the deoxygenation of carboxylic acid. Catal. Today 91, 111 (2004).

    Article  Google Scholar 

  23. D. Chen, M. Liu, L. Yin, T. Li, Z. Yang, X. Li, B. Fan, H. Wang, R. Zhang, Z. Li, H. Xu, H. Lu, D. Yang, J. Sun, and L. Gao: Single-crystalline MoO3 nanoplates: Topochemical synthesis and enhanced ethanol-sensing performance. J. Mater. Chem. 21, 9332 (2011).

    Article  CAS  Google Scholar 

  24. L.Q. Mai, B. Hu, W. Chen, Y.Y. Qi, C.S. Lao, R.S. Yang, Y. Dai, and Z.L. Wang: Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv. Mater. 19, 3712 (2007).

    Article  CAS  Google Scholar 

  25. J. Zhou, N.S. Xu, S.Z. Deng, J. Chen, J. C. She, and Z. Wang: Large-area nanowire arrays of molybdenum and molybdenum oxides: Synthesis and field emission properties. Adv. Mater. 15, 1835 (2003).

    Article  CAS  Google Scholar 

  26. T. Siciliano, A. Tepore, E. Filippo, G. Micocci, and M. Tepore: Characteristics of molybdenum trioxide nanobelts prepared by thermal evaporation technique. Mater. Chem. Phys. 114, 687 (2009).

    Article  CAS  Google Scholar 

  27. K. Kalantar-zadeh, J. Tang, M. Wang, K.L. Wang, A. Shailos, K. Galatsis, R. Kojima, V. Strong, A. Lech, W. Wlodarski, and R.B. Kaner: Synthesis of nanometre-thick MoO3 sheets. Nanoscale 2, 429 (2010).

    Article  CAS  Google Scholar 

  28. C.V. Krishnan, J. Chen, C. Burger, and B. Chu: Polymer-assisted growth of molybdenum oxide whiskers via a sonochemical process. J. Phys. Chem. B 110, 20182 (2006).

    Article  CAS  Google Scholar 

  29. G. Pan, Q. Guo, Z. Zhao, S. Zhouwang, Y. Qin, and L. Wang: Tribological properties of solid multilayer composite coatings in dry rolling contact. Tribol. Int. 44, 789 (2011).

    Article  CAS  Google Scholar 

  30. X. Zhou, D. Wu, H. Shi, X. Fu, Z. Hu, X. Wang, and F. Yan: Study on the tribological properties of surfactant-modified MoS2 micrometer spheres as an additive in liquid paraffin. Tribol. Int. 40, 863 (2007).

    Article  CAS  Google Scholar 

  31. H. Farag: Effect of sulfidation temperatures on the bulk structures of various molybdenum precursors. Energy Fuels 16, 944 (2002).

    Article  CAS  Google Scholar 

  32. Y. Okamoto, A. Kato, N. Usman, Rinaldi, T. Fujikawa, H. Koshika, I. Hiromitsu, and T. Kubota: Effect of sulfidation temperature on the intrinsic activity of Co–MoS2 and Co–WS2 hydrodesulfurization catalysts. J. Catal. 265, 216 (2009).

    Article  CAS  Google Scholar 

  33. F. Fang, Y. Shu, A. Wang, and T. Zhang: Green synthesis and characterization of anisotropic uniform single-crystal α-MoO3 nanostructures. J. Phys. Chem. C 111, 2401 (2007).

    Article  CAS  Google Scholar 

  34. G.S. Zakharova, C. Taeschner, V.L. Volkov, I. Hellman, R. Klingeler, A. Leonhardt, and B. Buechner: MoO3−δ nanorods: Synthesis, characterization and magnetic properties. Solid State Sci. 9, 1028 (2007).

    Article  CAS  Google Scholar 

  35. F.L. Pua, C.H. China, S. Zakaria, T. Liew, M.A. Yarmo, and N.M. Huang: Simple hydrothermal route for synthesizing transition metal sulfide nanoparticle. Sains Malaysiana 39, 243 (2010).

    CAS  Google Scholar 

  36. L.P. Hansen, Q.M. Ramasse, C. Kisielowski, M. Brorson, E. Johnson, H. Topsøe, and S. Helveg: Atomic-scale edge structures on industrial-style MoS2 nanocatalysts. Angew. Chem. Int. Ed. 50, 10153 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Director, IIP is acknowledged for approving the work. MGS and BSR thank UGC and CSIR for research fellowship, respectively. The authors thank ASD of Indian Institute of Petroleum for analytical services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sibi, M.G., Rana, B.S., Konathala, L.N.S. et al. Facile synthesis of hydrodynamic solid lubricant MoS2 from molybdenum trioxide nanorods. Journal of Materials Research 28, 1962–1971 (2013). https://doi.org/10.1557/jmr.2013.178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.178

Navigation