Skip to main content
Log in

Compressive properties of Al-A206/SiC and Mg-AZ91/SiC syntactic foams

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Metal matrix syntactic foams are promising materials with high energy absorption capability. To study the effects of matrix strength on the quasistatic compressive properties of syntactic foams using SiC hollow particles as reinforcement, matrices of Al-A206 and Mg-AZ91 were used. Because Al-A206 is a heat-treatable alloy, matrix strength can be varied by heat treatment conditions, and foams in as-cast, T4, and T7 conditions were tested in this study. It is shown that the peak strength, plateau strength, and toughness of the foams increase with increasing yield strength of the matrix and that these foams show better performance than other foams on a specific property basis. High strain rate testing of the Mg-AZ91/SiC syntactic foams showed that there was little strain rate dependence of the peak stress under strain rates ranging from 10−3/s to 726/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
TABLE II.
FIG. 3.
FIG. 4.
TABLE III.
TABLE IV.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. A.G. Evans, J.W. Hutchinson, and M.F. Ashby: Multifunctionality of cellular metal systems. Prog. Mater. Sci. 43, 171 (1999).

    Google Scholar 

  2. M.F. Ashby, A.G. Evans, and J.W. Hutchinson: Cellular Metals, A Design Guide (Cambridge University, Cambridge, England, 1998).

    Google Scholar 

  3. Y. Chino and D.C. Dunand: Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56, 105 (2008).

    CAS  Google Scholar 

  4. D.K. Balch, J.G. O'Dwyer, G.R. Davis, C.M. Cady, G.T. Gray III, and D.C. Dunand: Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions. Mater. Sci. Eng., A. 391, 408 (2005).

    Google Scholar 

  5. D.K. Balch and D.C. Dunand: Load partitioning in aluminum syntactic foams containing ceramic microspheres. Acta Mater. 54, 1501 (2006).

    CAS  Google Scholar 

  6. G.H. Wu, Z.Y. Dou, D.L. Sun, L.T. Jiang, B.S. Ding, and B.F. He: Compression behaviors of cenosphere-pure aluminum syntactic foams. Scr. Mater. 56, 221 (2007).

    CAS  Google Scholar 

  7. Q. Zhang, P.D. Lee, R. Singh, G. Wu, and T.C. Lindley: Micro-CT characterization of structural features and deformation behavior of fly ash/aluminum syntactic foam. Acta Mater. 57, 3003 (2009).

    CAS  Google Scholar 

  8. X.F. Tao, L.P. Zhang, and Y.Y. Zhao: Al matrix syntactic foam fabricated with bimodal ceramic microspheres. Mater. Des. 30, 2732 (2009).

    CAS  Google Scholar 

  9. X.F. Tao and Y.Y. Zhao: Compressive behavior of Al matrix syntactic foams toughened with Al particles. Scr. Mater. 61, 461 (2009).

    CAS  Google Scholar 

  10. Y. Zhao, X. Tao, and X. Xue: Manufacture and mechanical properties of metal matrix syntactic foams. In Proceedings of MS&T 2008 Processing, Properties and Performance of Composite Materials, The Printing House Inc: Stoughton, WI, 2008; p. 2607.

  11. I.N. Orbulov and J. Dobránszky: Producing metal matrix syntactic foams by pressure infiltration. Period. Polytech. Mech. Eng. 52, 35 (2008).

    Google Scholar 

  12. I.N. Orbulov and J. Ginsztler: Compressive characteristics of metal matrix syntactic foams. Composites Part A 43, 553 (2012).

    CAS  Google Scholar 

  13. R.A. Palmer, K. Gao, T.M. Doan, L. Green, and G. Cavallaro: Pressure infiltrated syntactic foams-process development and mechanical properties. Mater. Sci. Eng., A. 464, 85 (2007).

    Google Scholar 

  14. Z.Y. Dou, L.T. Jiang, G.H. Wu, Q. Zhang, Z.Y. Xiu, and G.Q. Chen: High strain rate compression of cenosphere-pure aluminum syntactic foams. Scr. Mater. 57, 945 (2007).

    CAS  Google Scholar 

  15. P.K. Rohatgi, J.K. Kim, N. Gupta, S. Alaraj, and A. Daoud: Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique. Composites Part A 37, 430 (2006).

    Google Scholar 

  16. L.P. Zhang and Y.Y. Zhao: Mechanical response of Al matrix syntactic foams produced by pressure infiltration casting. J. Compos. Mater. 41, 2105 (2007).

    CAS  Google Scholar 

  17. M. Kiser, M.Y. He, and F.W. Zok: The mechanical response of ceramic microballoon reinforced aluminum matrix composites under compressive loading. Acta Mater. 47, 2685 (1999).

    CAS  Google Scholar 

  18. W.J. Drury, S.A. Rickles, T.H. Sanders Jr, and J.K. Cochran: Deformation energy absorption characteristics of a metal/ceramic cellular solid, in Light-Weight Alloys for Aerospace Applications, edited by E.W. Loe, E.H. Chia, and N.J. Kim (The Minerals, Metals and Materials Society, Warrendale, PA, 1989), p. 311.

    Google Scholar 

  19. D.D. Luong, O.M. Strbik III, V.H. Hammond, N. Gupta, and K. Cho: Development of high performance lightweight aluminum alloy/SiC hollow sphere syntactic foams and compressive characterization of quasi-static and high strain rates. J. Alloys Compd. 550, 412 (2013).

    CAS  Google Scholar 

  20. J. Weise, V. Zanetti-Bueckmann, O. Yezerska, M. Schneider, and M. Haesche: Processing, properties and coating of micro-porous syntactic foams. Adv. Eng. Mater. 9, 52 (2007).

    CAS  Google Scholar 

  21. M. Hartmann, K. Reindel, and R.F. Singer: Fabrication and properties of syntactic magnesium foams, in Porous and Cellular Materials for Structural Applications, edited by D.S. Schwartz, D.S. Shih, H.N.G. Wadley, and A.G. Evans (Mater. Res. Soc. Symp. Proc. 521, Warrendale, PA, 1998) p. 211.

  22. J.D. DeFouw and P.K. Rohatgi: Low density magnesium matrix syntactic foams. In TMS2011 140th Annual Meeting & Exhibition Supplemental Proceedings Materials Fabrication, Properties, Characterization and Modeling, Vol. 2 (John Wiley & Sons, Inc., Hoboken, NJ, 2011), p. 797.

  23. A. Daoud, M.T. Abou El-khair, M. Abdel-Aziz, and P. Rohatgi: Fabrication, microstructure and compressive behavior of ZC63 Mg-microballoon foam composites. Compos. Sci. Technol. 67, 1842 (2007).

    CAS  Google Scholar 

  24. A. Daoud: Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting. Mater. Sci. Eng., A. 488, 281 (2008).

    Google Scholar 

  25. D.P. Mondal, J.D. Majumder, N. Jha, A. Badkul, S. Das, A. Patel, and G. Gupta: Titanium-cenosphere syntactic foam made through powder metallurgy route. Mater. Des. 34, 82 (2012).

    CAS  Google Scholar 

  26. L.J. Vendra, and A. Rabiei: A study on aluminum-steel composite metal foam processed by casting. Mater. Sci. Eng., A. 465, 59 (2007).

    Google Scholar 

  27. A. Rabiei and L.J. Vendra: A comparison of composite metal foam’s properties and other comparable metal foams. Mater. Lett. 63, 533 (2009).

    CAS  Google Scholar 

  28. B.P. Neville and A. Rabiei: Composite metal foams processed through powder metallurgy. Mater. Des. 29, 388 (2008).

    CAS  Google Scholar 

  29. G. Castro and S.R. Nutt: Synthesis of syntactic steel foam using mechanical pressure infiltration. Mater. Sci. Eng., A. 535, 274 (2012).

    CAS  Google Scholar 

  30. L. Peroni, M. Scapin, M. Avalle, J. Weise, and D. Lehmhus: Dynamic mechanical behavior of syntactic iron foams with glass microspheres. Mater. Sci. Eng., A. 552, 364 (2012).

    CAS  Google Scholar 

  31. A. Mortensen and I. Jin: Solidification processing of metal matrix composites. Int. Mater. Rev. 37, 101 (1992).

    CAS  Google Scholar 

  32. H. Chandler, editor. Heat Treater’s Guide: Practices and Procedures for Nonferrous Alloys (ASM International, Materials Park, OH, 1996), pp. 135–145.

    Google Scholar 

  33. C. San Marchi, F. Cao, M. Kouzeli, and A. Mortensen: Quasistatic and dynamic compression of aluminum-oxide particle reinforced pure aluminum. Mater. Sci. Eng., A 337, 202 (2002).

    Google Scholar 

  34. K. Ishikawa, H. Watanabe, and T. Mukai: High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperatures. Mater. Lett. 59, 1511 (2005).

    CAS  Google Scholar 

  35. T. Mukai, H. Kanahashi, Y. Yamada, K. Shimojima, M. Mabuchi, T.G. Nieh, and K. Higashi: Dynamic compressive behavior of an ultra-lightweight magnesium foam. Scr. Mater. 41, 365 (1999).

    CAS  Google Scholar 

  36. N. Gupta, D.D. Luong, and P.K. Rohatgi: A method for intermediate strain rate compression testing and study of compressive failure mechanism of Mg-Al-Zn alloy. J. Appl. Phys. 109, 103512 (2011).

    Google Scholar 

  37. M. Talamantes-Silva, A. Rodríguez, J. Talamantes-Silva, S. Valtierra, and R. Colás: Effect of solidification rate and heat treating on the microstructure and tensile behavior of an aluminum-copper alloy. Metall. Mater. Trans. B 39, 911 (2008).

    Google Scholar 

  38. L. Bäckerud, G. Chai, and J. Tamminen: Solidification Characteristics of Aluminum Alloys volume 2 Foundry Alloys (AFS/Skanaluminium, des Plaines, IL, 1990), pp. 63–69.

    Google Scholar 

  39. A. Srinivasa, J. Swaminathan, M.K. Gunjan, U.T.S. Pillai, and B.C. Pai: Effect of intermetallic phases on the creep behavior of AZ91 magnesium alloy. Mater. Sci. Eng., A 527, 1395 (2010).

    Google Scholar 

  40. K.N. Braszczyńska-Malik and A. Zyska: Influence of solidification rate on microstructure of gravity cast AZ91 magnesium alloy. Arch. Foundry Eng. 10, 23 (2010).

    Google Scholar 

  41. A. Ureña, J.M. Gómez de Salazar, L. Gil, M.D. Escalera, and J.L. Baldonedo: Scanning and transmission electron microscopy study of the microstructural changes occuring in aluminum matrix composites reinforced with SiC particles during casting and welding: interface reactions. J. Microsc. 196, 124 (1999).

    Google Scholar 

  42. A. Luo: Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites. Metall. Mater. Trans. A. 26, 2445 (1995).

    Google Scholar 

  43. J.G. Kaufman and E.L. Rooy: Aluminum Alloy Castings: Properties, Processes, and Applications (ASM International, Materials Park, OH, 2004), p. 81–82.

    Google Scholar 

  44. J.G. Kaufman: Magnesium Alloy Database (Knovel, Norwich, NY, 2011). Table 2b, Online version available at: http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=4259&VerticalID=0.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the U.S. Army-TARDEC through Tank and Automotive Command R&D Contract No. W56HZV-08-C-0716. The authors would like to acknowledge Oliver M. Strbik III of Deep Springs Technology, LLC for supply of the SiC hollow spheres used in this study. N. Gupta acknowledges Office of Naval Research grant N00014-10-1-0988 with Dr. Yapa D.S. Rajapakse as the program manager. Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA and shall not be used for advertising or product endorsement purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Franklin Schultz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha Rivero, G.A., Schultz, B.F., Ferguson, J. et al. Compressive properties of Al-A206/SiC and Mg-AZ91/SiC syntactic foams. Journal of Materials Research 28, 2426–2435 (2013). https://doi.org/10.1557/jmr.2013.176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.176

Navigation