Skip to main content
Log in

Synthesis of Na-β″/β-Al2O3 nanorods in an ionic liquid

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Li-stabilized Na-β″/β-Al2O3(Na1.61Li0.29Al10.70O17) nanorods were prepared by a soft chemistry process using a 1-alkyl-3-methylimidazolium bromide ([CXmim]Br, X = 4, 12, 16) ionic liquid as a template. Pure Na-β″/β-Al2O3 rods were obtained by heating at 1100 °C with [C16mim]Br as the template, resulting in nanorods of approximately 50 nm in diameter and 200–300 nm in length. It is demonstrated that alkyl chain length is the main factor determining the aspect ratio of the nanorods. The specific surface area of the powder is 81.3 m2/g, which is more than one order of magnitude higher than that of the powder prepared by a conventional solid state reaction process. The formation mechanism of the nanorods is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. Z. Wen, Z. Gu, X. Xu, J. Cao, F. Zhang, and Z. Lin: Research activities in Shanghai Institute of Ceramics, Chinese Academy of Sciences on the solid electrolytes for sodium sulfur batteries. J. Power Sources 184, 641 (2008).

    Article  CAS  Google Scholar 

  2. B. Dunn, H. Kamath, and J.M. Tarascon: Electrical energy storage for the grid a battery of choices. Science 334, 928 (2011).

    Article  CAS  Google Scholar 

  3. A.V. Virkar, M.L. Miller, I.B. Cutler, and R.S. Gordon: Methods preparing dense, high strength, and electrically conductive ceramics containing β″-alumina. U.S. Patent No. 4 113 928, 1978.

    Google Scholar 

  4. X. Lu, G. Xia, J.P. Lemmon, and Z. Yang: Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives. J. Power Sources 195, 2431 (2010).

    Article  CAS  Google Scholar 

  5. N. Li, Z. Wen, X. Wu, J. Zhang, and Y. Liu: Synthesis of nano-Na-β″/β-Al2O3 powders by a citrate complex process. J. Alloys Compd. 479, 648 (2009).

    Article  CAS  Google Scholar 

  6. T.L. Francis, F.E. Phelps, and G. Maczura: Sintered sodium beta alumina ceramics. Am. Ceram. Soc. Bull. 50, 615 (1971).

    CAS  Google Scholar 

  7. M. River and A.D. Pelton: New slip-casting technique for the laboratory fabrication of beta-alumina and other ceramics. Am. Ceram. Soc. Bull. 57, 183 (1978).

    Google Scholar 

  8. M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, and B. Scrosati: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621 (2009).

    Article  CAS  Google Scholar 

  9. V.I. Parvulescu and C. Hardacre: Catalysis in ionic liquids. Chem. Rev. 107, 2615 (2007).

    Article  CAS  Google Scholar 

  10. N.V. Plechkova and K.R. Seddon: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123 (2008).

    Article  CAS  Google Scholar 

  11. J. Ma, X. Hong, and J. Zhan: Ionic liquids in separation of organic pollutants. Procedia Environ. Sci. 12, 225 (2012).

    Article  Google Scholar 

  12. J. Dupont, C.S. Consorti, and J. Spencer: Room temperature molten salts: Neoteric "Green" solvents for chemical reactions and processes. J. Braz. Chem. Soc. 11, 337 (2000).

    CAS  Google Scholar 

  13. D.B. Zhao, M. Wu, Y. Kou, and E.Z. Min: Ionic liquids: Applications in catalysis. Catal. Today 74, 157 (2002).

    Article  CAS  Google Scholar 

  14. T. Welton: Ionic liquids in catalysis. Coord. Chem. Rev. 248, 2459 (2004).

    Article  CAS  Google Scholar 

  15. H.G. Zhu, J.F. Huang, Z.W. Pan, and S. Dai: Ionothermal synthesis of hierarchical ZnO nanostructures from ionic-liquid precursors. Chem. Mater. 18, 4473 (2006).

    Article  CAS  Google Scholar 

  16. J. Cao: Microwave-assisted synthesis of flower-like ZnO nanosheet aggregates in a room-temperature ionic liquid. Chem. Lett. 3(10), 1332 (2004).

    Article  Google Scholar 

  17. D.S. Eddy and J.F. Rhodes: Method of making sodium beta-alumina powder and sintering articles. U.S. Patent No. 4 052 538, 1977.

    Google Scholar 

  18. A.V. Virkar: Hot-pressing of Li2O-stabilized β″-alumina. J. Am. Ceram. Soc. 57, 508 (1974).

    Article  CAS  Google Scholar 

  19. Y. Zhao, X. Hu, Q. Zhang, P. Guan, and J. Yu: Solvent-free synthesis, crystal structure and thermal stability of ionic liquid 1-hexadecyl-3-methylimidazolium bromide. Chin. J. Struct. Chem. 28, 1077 (2009).

    CAS  Google Scholar 

  20. M.H. Schmidt, I. Ellison, K. Holliday, M. Kubin, and F.J. Trujillo: Selective inhibition of aragonite growth by citrate and isocitrate at moderate supersaturations, as measured by an optical-microscope flow-cell assay. Cryst. Growth 310, 804 (2008).

    Article  CAS  Google Scholar 

  21. A. Sugawar and T. Kato: Aragonite CaCO3 thin-film formation by cooperation of Mg2+ and organic polymer matrices. Chem. Commun. 6, 487 (2000).

    Article  Google Scholar 

  22. D. Rautaray, A. Banpurkar, S.R. Sainkar, A.V. Limaye, N.R. Pavaskar, S.B. Ogale, and M. Sastry: Room-temperature synthesis of aragonite crystals at an expanding liquid–liquid interface in a radial Hele–Shaw cell. Adv. Mater. 15, 1273 (2003).

    Article  CAS  Google Scholar 

  23. L. Guerra-Abreu, V. Pinoa, J.L. Anderson, and A.M. Afonso: Coupling the extraction efficiency of imidazolium-based ionic liquid aggregates with solid-phase microextraction-gas chromatography-mass spectrometry application to polycyclic aromatic hydrocarbons in a certified reference sediment. J. Chromatogr. A 1214, 23 (2008).

    Article  CAS  Google Scholar 

  24. S. Zeng and X. Yang: Hydrolyzation of the aluminum isopropoxide. Bull. Chin. Ceram. Soc. 6(2), 29 (1992).

    Google Scholar 

  25. Y. Zhu, W. Wang, R. Qi and X. Hu: Microwave assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angew. Chem. 116, 1434 (2004).

    Article  Google Scholar 

  26. B.L. Bhargava and M.L. Klein: Initial stages of aggregation in aqueous solutions of ionic liquids: Molecular dynamics studies. J. Phys. Chem. A 113, 9499 (2009).

    Article  CAS  Google Scholar 

  27. J.J. Wang, H.Y. Wang, S.L. Zhang, H.C. Zhang, and Y.J. Zhao: Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [Cnmim]Br (n = 4, 6, 8, 10, 12) in aqueous solutions. Phys. Chem. B 111, 6181 (2007).

    Article  CAS  Google Scholar 

  28. H.C. Zhang, H.J. Liang, J.J. Wang, and K. Li: Aggregation behavior of imidazolium-based ionic liquids in water. Z. Phys. Chem. 221, 1061 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant No. 50730001) and Chinese Science and Technology Ministry (Grant No. 2007 CB 209700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyin Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Zhang, G., Wu, X. et al. Synthesis of Na-β″/β-Al2O3 nanorods in an ionic liquid. Journal of Materials Research 28, 2017–2022 (2013). https://doi.org/10.1557/jmr.2013.174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.174

Navigation