Skip to main content
Log in

Metal foam regenerators; heat transfer and storage in porous metals

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Open pore metal foams may be of interest as regenerators because of their large specific surface area and their high porosity. In this experiment, three aluminum foam samples (pore size 2–2.36 mm and around 65% porosity) were manufactured by the replication process. The volumetric heat transfer coefficient and number of transfer units (NTU) of the foams and a packed bed of steel ball bearings (2 mm diameter) were determined using a single-blow transient technique over the range 500 < Rem < 1400. The NTU values of the foams and ball bearings both reduced with increasing Reynolds number (flow velocity). The pressure drop across the matrices increased with the velocity, though the values for the metal foams were much lower than that of the ball bearings, indicating that they may have potential for this type of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
TABLE I.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
TABLE II.
FIG. 8.

Similar content being viewed by others

References

  1. Y. Timoumi, I. Tlili, and S.B. Nasrallah: Performance optimization of Stirling engines. Renewable Energy 33, 2134–2144 (2008).

    Article  CAS  Google Scholar 

  2. D.G. Thombare and S.K. Verma: Technological development in the Stirling cycle engines. Renewable Sustainable Energy Rev. 12(1), 1–38 (2008).

    Article  Google Scholar 

  3. A.J. Organ: The Regenerator and the Stirling Engine (Mechanical Engineering Publications, London, England, 1997).

    Google Scholar 

  4. H. Chen, C. Chang, and J. Huang: Effect of oversize in wire-screen matrix to the matrix holding tube on regenerator thermal performance. Cryogenics 36(5), 365–372 (1996).

    Article  CAS  Google Scholar 

  5. M. Tanaka, L. Yanashita, and F. Chisaka: Flow and heat transfer characteristics of the Stirling engine regenerator in an oscillating flow. JSME Int. J. 33(2), 283–289 (1990).

    CAS  Google Scholar 

  6. Y. Conde, J.F. Despois, R. Goodall, A. Marmottant, L. Salvo, C. San Marchi, and A. Mortensen: Replication processing of highly porous materials. Adv. Eng. Mater. 8(9), 795–803 (2006).

    Article  CAS  Google Scholar 

  7. L.S. Tong and A.L. London: Heat-transfer and flow-friction characteristics of woven-screen and crossed-rod matrixes. Trans. ASME 79, 1558–1570 (1957).

    Google Scholar 

  8. D.D. Ebbing and S.D. Gammon: General Chemistry, 9th ed. (Houghton Mifflin Company, Boston, MA, 2009).

    Google Scholar 

  9. R. Goodall and A. Mortensen: Microcellular aluminum? Child’s play! Adv. Eng. Mater. 9(11), 951–954 (2007).

    Article  Google Scholar 

  10. E.W. Andrews, G. Gioux, P. Onck, and L.J. Gibson: Size effects in ductile cellular solids. Part II: Experimental results. Int. J. Mech. Sci. 43, 701–713 (2001).

    Article  Google Scholar 

  11. British Standard: Measurement of Fluid Flow by Means of Pressure Differential Devices (The British Standard Institution, BSI EN ISO, 2007).

    Google Scholar 

  12. Y.A. Cengel and M.A. Boles: Thermodynamics: An Engineering Approach, 7th. Ed. (McGraw-Hill, London, England, 2011).

    Google Scholar 

  13. T.E.W. Schumann: Heat transfer: A liquid flowing through a porous prism. J. Franklin Inst. 208(3), 405–416 (1929).

    Article  CAS  Google Scholar 

  14. C.C. Furnas: Heat transfer from a gas stream to bed of broken solids. J. Ind. Eng. Chem. 22, 721–731 (1930).

    Article  CAS  Google Scholar 

  15. G.L. Locke: Heat Transfer and Flow Friction Characteristics of Porous Solids (Stanford University, Department of Mechanical Engineering, Stanford, CA, 1950).

    Google Scholar 

  16. C.Y. Liang and W.J. Yang: Modified single-blow technique for performance evaluation on heat transfer surfaces. J. Heat Transfer-Trans. ASME 97(1), 16–21 (1975).

    Article  Google Scholar 

  17. Z.H. Cai, M.L. Li, Y.W. Wu, and H.S. Ren: A modified selected point matching technique for testing compact heat exchanger surfaces. Int. J. Heat Mass Transfer 27(7), 971–978 (1984).

    Article  Google Scholar 

  18. G.F. Kohlmayr: Exact maximum slopes for transient matrix heat-transfer testing. Int. J. Heat Mass Transfer 9(7), 671–680 (1966).

    Article  CAS  Google Scholar 

  19. P.J. Heggs and D. Burns: Single-blow experimental prediction of heat transfer coefficients: A comparison of four commonly used techniques. Exp. Therm. Fluid Sci. 1(3), 243–251 (1988).

    Article  CAS  Google Scholar 

  20. F. Darabi: Heat and momentum transfer in packed beds. Ph.D. Thesis, University of Leeds, England, 1982.

    Google Scholar 

  21. B.S. Baclic, D.D. Gvozdenac, D.P. Sekulic, and E.J. Becic: Laminar heat transfer characteristics of a plate-louver fin surface obtained by the differential fluid enthalpy method. Adv. Heat Exch. Des. 66, 21–27 (1986).

    CAS  Google Scholar 

  22. H. Chen and C. Chang: Measurements of thermal performance of cryocooler regenerators using an improved single-blow method. Int. J. Heat Mass Transfer 40(10), 2341–2349 (1997).

    Article  CAS  Google Scholar 

  23. C. Chang, S. Hung, P. Ding, and H. Chen: Experimental evaluation of thermal performance of Gifford-McMahon regenerator using an improved single-blow model with radial conduction. Int. J. Heat Mass Transfer 42, 405–413 (1999).

    Article  Google Scholar 

  24. A. Elsner, A. Wagner, T. Aste, H. Hermann, and D. Stoyan: Specific surface area and volume fraction of the cherry-pit model with packed pits. J. Phys. Chem. B 113(22), 7780–7784 (2009).

    Article  CAS  Google Scholar 

  25. K. Boomsma, D. Poulikakos, and F. Zwick: Metal foams as compact high performance heat exchangers. Mech. Mater. 35, 1161–1176 (2003).

    Article  Google Scholar 

  26. N. Dukhan and C. Chen: Heat transfer measurements in metal foam subjected to constant heat flux. Exp. Therm. Fluid Sci. 32, 624–631 (2007).

    Article  CAS  Google Scholar 

  27. J.F. Despois and A. Mortensen: Permeability of open-pore microcellular materials. Acta Mater. 53, 1381–1388 (2005).

    Article  CAS  Google Scholar 

  28. Y. Boonyongmaneerat and D.C. Dunand: Ni-Mo-Cr foams processed by casting replication of sodium aluminate preforms. Adv. Eng. Mater. 10(4), 379–383 (2008).

    Article  CAS  Google Scholar 

  29. J.D. DeFouw and D.C. Dunand: Processing and compressive creep of cast replicated IN792 Ni-base superalloy foams. Mater. Sci. Eng., A 558, 129–133 (2012).

    Article  CAS  Google Scholar 

  30. R. Goodall: Porous metals: Foams and sponges, in Advances in Powder Metallurgy: Properties, Processing and Applications, edited by I. Chang and Y. Zhao (Woodhead Publishing Ltd., Cambridge, UK, 2013).

    Google Scholar 

Download references

Acknowledgments

We would like to thank the technicians Mr. Malcolm Nettleship and Mr. Chris Grigson for their guidance and advice. One of the authors, E.M. Elizondo Luna, would like to thank the Mexican Government’s National Council of Science and Technology CONACYT for provision of a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Barari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barari, F., Luna, E.M.E., Goodall, R. et al. Metal foam regenerators; heat transfer and storage in porous metals. Journal of Materials Research 28, 2474–2482 (2013). https://doi.org/10.1557/jmr.2013.156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.156

Navigation