Skip to main content
Log in

3D morphological evolution of porous titanium by x-ray micro- and nano-tomography

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The 3D morphological evolution of titanium foams as they undergo a two-step fabrication process is quantitatively characterized through x-ray micro- and nano-tomography. In the first process step, a Cu–Ti–Cr–Zr prealloy is immersed in liquid Mg, where Cu is alloyed with Mg while a skeleton of crystalline Ti–Cr–Zr is created. In the second step, the Mg–Cu phase is etched in acid, leaving a Ti–Cr–Zr foam with submicron struts. 3D images of these solidified Ti–Cr–Zr/Mg–Cu composites and leached Ti–Cr–Zr foams are acquired after 5, 10, and 30 min exposure to liquid Mg. As the Mg exposure time increases, the Ti–Cr–Zr ligaments grow in size. The tortuosity loosely follows the Bruggeman relation. The interfacial surface distribution of these Ti-foams is qualitatively similar to other nano-porous metal prepared by one-step dealloying. The characteristic length of the Mg–Cu phase and pores are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. M.E. Cox and D.C. Dunand: Bulk gold with hierarchical macro-, micro- and nano-porosity. Mater. Sci. Eng., A 528(6), 2401 (2011).

    Article  Google Scholar 

  2. J. Erlebacher and R. Seshadri: Hard materials with tunable porosity. MRS Bull. 34, 6 (2009).

    Article  Google Scholar 

  3. I. Cheng and A. Hodge: Morphology, oxidation, and mechanical behavior of nanoporous Cu foams. Adv. Eng. Mater. 14(4), 219–226 (2011).

    Article  Google Scholar 

  4. X.H. Gu, L.Q. Xu, F. Tian, and Y. Ding: Au-Ag alloy nanoporous nanotubes. Nano Res. 2(5), 386 (2009).

    Article  CAS  Google Scholar 

  5. M.C. Dixon, T.A. Daniel, M. Hieda, D.M. Smilgies, M.H.W. Chan, and D.L. Allara: Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir 23(5), 2414 (2007).

    Article  CAS  Google Scholar 

  6. L.H. Qian, W. Shen, B. Shen, G.W.W. Qin, and B. Das: Nanoporous gold-alumina core-shell films with tunable optical properties. Nanotechnology 21(30), 7 (2010).

    Article  Google Scholar 

  7. T. Wada, K. Yubuta, A. Inoue, and H. Kato: Dealloying by metallic melt. Mater. Lett. 65(7), 1076 (2011).

    Article  CAS  Google Scholar 

  8. H.Q. Li, A. Misra, J.K. Baldwin, and S.T. Picraux: Synthesis and characterization of nanoporous Pt-Ni alloys. Appl. Phys. Lett. 95(20), 201902 (2009).

    Article  Google Scholar 

  9. A.K.M. Kafi, A. Ahmadalinezhad, J.P. Wang, D.F. Thomas, and A.C. Chen: Direct growth of nanoporous Au and its application in electrochemical biosensing. Biosens. Bioelectron. 25(11), 2458 (2010).

    Article  CAS  Google Scholar 

  10. D.Y. Ding and Z. Chen: A pyrolytic, carbon-stabilized, nanoporous Pd film for wide-range H-2 sensing. Adv. Mater. 19(15), 1996 (2007).

    Article  CAS  Google Scholar 

  11. J. Biener, A. Wittstock, L.A. Zepeda-Ruiz, M.M. Biener, V. Zielasek, D. Kramer, R.N. Viswanath, J. Weissmuller, M. Baumer, and A.V. Hamza: Surface-chemistry-driven actuation in nanoporous gold. Nat. Mater. 8(1), 47 (2009).

    Article  CAS  Google Scholar 

  12. X.Y. Lang, A. Hirata, T. Fujita, and M.W. Chen: Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6(4), 232 (2011).

    Article  CAS  Google Scholar 

  13. A. Wittstock, V. Zielasek, J. Biener, C.M. Friend, and M. Baumer: Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327(5963), 319 (2010).

    Article  CAS  Google Scholar 

  14. Y. Yu, L. Gu, X.Y. Lang, C.B. Zhu, T. Fujita, M.W. Chen, and J. Maier: Li storage in 3D nanoporous au-supported nanocrystalline tin. Adv. Mater. 23(21), 2443 (2011).

    Article  CAS  Google Scholar 

  15. T. Wada, A.D. Setyawan, K. Yubuta, and H. Kato: Nano- to submicro-porous beta-Ti alloy prepared from dealloying in a metallic melt. Scr. Mater. 65(6), 532 (2011).

    Article  CAS  Google Scholar 

  16. A. Mathur and J. Erlebacher: Size dependence of effective Young's modulus of nanoporous gold. Appl. Phys. Lett. 90(6), 061910 (2007).

    Article  Google Scholar 

  17. E. Seker, J.T. Gaskins, H. Bart-Smith, J. Zhu, M.L. Reed, G. Zangari, R. Kelly, and M.R. Begley: The effects of post-fabrication annealing on the mechanical properties of freestanding nanoporous gold structures. Acta Mater. 55(14), 4593 (2007).

    Article  CAS  Google Scholar 

  18. S. Youssef, E. Maire, and R. Gaertner: Finite element modelling of the actual structure of cellular materials determined by x-ray tomography. Acta Mater. 53(3), 719 (2005).

    Article  CAS  Google Scholar 

  19. J. Wang, Y-C.K. Chen, Q. Yuan, A. Tkachuk, C. Erdonmez, B. Hornberger, and M. Feser: Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3D spatial resolution. Appl. Phys. Lett. 100(14), 143107 (2012).

    Article  Google Scholar 

  20. F. De Carlo, X.H. Xiao, and B. Tieman: X-ray tomography system, automation and remote access at beamline 2-BM of the advanced photon source - art. no. 63180K. In 5th Conference on Developments in X-Ray Tomography, Vol. 6318, Bellingham, WA, 2006, p. K3180.

  21. F. Natterer: The Mathematics of Computerized Tomography (Wiley, Philadelphia, PA, 1986), pp. 102–118.

    Google Scholar 

  22. M. Zbik, W. Martens, R. Frost, Y. Song, Y. Chen, and J. Chen: Transmission x-ray microscopy (TXM) reveals the nanostructure of a smectite gel. Langmuir 24(16), 8954 (2008).

    Article  Google Scholar 

  23. J.J. Lombardo, R.A. Ristau, W.M. Harrisa, and W.K.S. Chiu: Focused ion beam preparation of samples for x-ray nanotomography. J. Synchrotron Radiat. 19, 789 (2012).

    Article  Google Scholar 

  24. Y.-C.K. Chen-Wiegart, J.S. Cronin, Q. Yuan, K.J. Yakal-Kremski, S.A. Barnett, and J. Wang: 3D non-destructive morphological analysis of a solid oxide fuel cell anode using full-field x-ray nano-tomography. J. Power Sources 218, 348 (2012).

    Article  CAS  Google Scholar 

  25. P.R. Shearing, J. Golbert, R.J. Chater, and N.P. Brandon: 3D reconstruction of SOFC anodes using a focused ion beam lift-out technique. Chem. Eng. Sci. 64(17), 3928 (2009).

    Article  CAS  Google Scholar 

  26. B. Munch and L. Holzer: Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion J. Am. Ceram. Soc. 91(12), 4059 (2008).

    Article  CAS  Google Scholar 

  27. E. Maire, O. Caty, A. King, and J. Adrien: X-ray tomography study of cellular materials: Experiments and modelling, in Iutam Symposium on Mechanical Properties of Cellular Materials, Vol. 12, 2009, p. 35.

  28. J. Alkemper and P.W. Voorhees: Three-dimensional characterization of dendritic microstructures. Acta Mater. 49(5), 897 (2001).

    Article  CAS  Google Scholar 

  29. Z. Liu, J.S. Cronin, Y-C.K. Chen-Wiegart, J.R. Wilson, K.J. Yakal-Kremski, J. Wang, K.T. Faber, and S.A. Barnett: Three-dimensional morphological measurements of LiCoO2 and LiCoO2/Li(Ni1/3Mn1/3Co1/3)O2 lithium-ion battery cathodes. J. Power Sources 227, 267–274 (2013).

    Article  CAS  Google Scholar 

  30. Y.-C.K. Chen-Wiegart, Z. Liu, K.T. Faber, S.A. Barnett, and J. Wang: 3D analysis of a LiCoO2-Li(Ni1/3Mn1/3Co1/3)O2 Li-ion battery positive electrode using x-ray nano-tomography. Electrochem. Commun. 28, 127–130 (2013).

  31. Y.-C.K. Chen-Wiegart, S. Wang, Y.S. Chu, W. Liu, I. McNulty, P.W. Voorhees, and D.C. Dunand: Structural evolution of nanoporous gold during thermal coarsening. Acta Mater. 60, 4972 (2012).

    Article  CAS  Google Scholar 

  32. H. Rosner, S. Parida, D. Kramer, C. Volkert, and J. Weissmuller: Reconstructing a nanoporous metal in three dimensions: An electron tomography study of dealloyed gold leaf. Adv. Eng. Mater. 9(7), 535 (2007).

    Article  Google Scholar 

  33. E. Maire, P. Colombo, J. Adrien, L. Babout, and L. Biasetto: Characterization of the morphology of cellular ceramics by 3D image processing of x-ray tomography. J. Eur. Ceram. Soc. 27(4), 1973 (2007).

    Article  CAS  Google Scholar 

  34. I.V. Thorat, D.E. Stephenson, N.A. Zacharias, K. Zaghib, J.N. Harb, and D.R. Wheeler: Quantifying tortuosity in porous Li-ion battery materials. J. Power Sources 188(2), 592 (2009).

    Article  CAS  Google Scholar 

  35. Y. Kwon, K. Thornton, and P.W. Voorhees: The topology and morphology of bicontinuous interfaces during coarsening. Europhys. Lett. 86(4), 46005 (2009).

    Article  Google Scholar 

  36. Y. Kwon, K. Thornton, and P. Voorhees: Coarsening of bicontinuous structures via nonconserved and conserved dynamics. Phys. Rev. E 75(2), 021120 (2007).

    Article  Google Scholar 

  37. D. Kammer and P.W. Voorhees: The morphological evolution of dendritic microstructures during coarsening. Acta Mater. 54(6), 1549 (2006).

    Article  CAS  Google Scholar 

  38. Y.c.K. Chen, Y.S. Chu, J. Yi, I. McNulty, Q. Shen, P.W. Voorhees, and D.C. Dunand: Morphological and topological analysis of coarsened nanoporous gold by x-ray nanotomography. Appl. Phys. Lett. 96(4), 043122 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Fernando Camino (BNL) for assisting the development of the sample preparation procedure using FIB/SEM. FIB-lift out sample preparation was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Use of the National Synchrotron Light Source is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Supplementary Material

Supplementary Material

Supplementary materials can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen-Wiegart, Yc.K., Wada, T., Butakov, N. et al. 3D morphological evolution of porous titanium by x-ray micro- and nano-tomography. Journal of Materials Research 28, 2444–2452 (2013). https://doi.org/10.1557/jmr.2013.151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.151

Navigation