Skip to main content
Log in

Triple junction structure and carbide precipitation in 304L stainless steel

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Type 304L stainless steel (SS) samples were used to investigate the correlation between carbide precipitation and triple junction structure derived from crystallographic data obtained by the orientation imaging microscopy associated with electron backscattered diffraction. The samples were solution treated and annealed at different sensitization temperatures/time to introduce various degrees of carbide precipitation at the interface region, thus different degrees of selectivity toward triple junctions. Four models were used to characterize triple junction microstructures: (i) the I-line and U-line model, (ii) the coincident axial direction (CAD) model, (iii) the coincident site lattice (CSL)/grain boundary (GB) model and (iv) the plane matching (PM)/GB model. Among them, the I-line and U-line model is the most effective in identifying special triple junctions, i.e., those exhibiting the beneficial property of high resistance to carbide precipitation. The results showed that the percentage of special triple junctions (I-lines) immune to carbide precipitation, increased from 35 to 80%, as the precipitation became more selective toward triple junction structures due to the corresponding sensitization heat treatment conditions, whereas more than 80% of random triple junctions (U-lines) exhibited susceptibility to carbide precipitation regardless of the sensitization conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.T. Aust and B. Chalmers: Energies and structure of grain boundaries. In Metal Interfaces (ASM, Cleveland, OH, 1952), p.153.

    Google Scholar 

  2. D. McLean: Grain Boundaries in Metals (Oxford University Press, London, England, 1957), pp. 1, 15, 44.

    Google Scholar 

  3. K.T. Aust and J.W. Rutter: Grain boundary migration in high-purity lead and dilute lead-tin alloys. Trans. TMS-AIME 215, 119 (1959).

    CAS  Google Scholar 

  4. F. Weinberg: Grain boundaries in metals. Prog. Met. Phys. 8, 105 (1959).

    Article  CAS  Google Scholar 

  5. H. Gleiter and B. Chalmers: High-angle grain boundaries. Prog. Mater. Sci. 16, 1 (1972).

    Article  Google Scholar 

  6. C.S. Pande and Y.T. Chou: Growth, structure and mechanical behavior of bicrystals, in Treatise on Materials Science and Technology, edited by H. Herman (Academic Press, London, England, 1975), p. 43.

    Chapter  Google Scholar 

  7. U. Erb, H. Gleiter, and G. Schwitzgebel: The effect of boundary structure (energy) on interfacial corrosion. Acta Metall. 30, 1377 (1982).

    Article  CAS  Google Scholar 

  8. Materials Interfaces: Atomic-Level Structure and Properties, edited by D. Wolf and S. Yip (Chapman & Hall, London, England, 1992), pp. 1, 87, 190.

    Google Scholar 

  9. T. Watanabe: An approach to grain boundary design for strong and ductile polycrystals. Res. Mech. 11, 47 (1984).

    CAS  Google Scholar 

  10. V. Randle: Grain boundary engineering: An overview after 25 years. Mater. Sci. Technol. 26, 253 (2010).

    Article  CAS  Google Scholar 

  11. T. Watanabe: Grain boundary engineering: Historical perspective and future prospects. J. Mater. Sci. 46, 4095 (2011).

    Article  CAS  Google Scholar 

  12. G. Gottstein and L.S. Shvindlerman: Grain boundary junction engineering. Scr. Mater. 54, 1065 (2006).

    Article  CAS  Google Scholar 

  13. P. Davies, V. Randle, G. Watkins, and H. Davies: Triple junction distribution profiles as assessed by electron backscatter diffraction. J. Mater. Sci. 37, 4203 (2002).

    Article  CAS  Google Scholar 

  14. C. Schuh, M. Kumar, and W. King: Universal features of grain boundary networks in FCC materials. J. Mater. Sci. 40, 847 (2005).

    Article  CAS  Google Scholar 

  15. S. Tsurekawa, S. Nakamichi, and T. Watanabe: Correlation of grain boundary connectivity with grain boundary character distribution in austenitic stainless steel. Acta Mater. 54, 3617 (2006).

    Article  CAS  Google Scholar 

  16. G. Rohrer, V. Randle, C. Kim, and Y. Hu: Changes in the five-parameter grain boundary character distribution in a-brass brought about by iterative thermomechanical processing. Acta Mater. 54, 4489 (2006).

    Article  CAS  Google Scholar 

  17. V.B. Rabukhin: Influence of ternary joint of grain on plasticity without diffusional mobility. Phys. Met. Metall. 61, 996 (1986).

    CAS  Google Scholar 

  18. G. Palumbo and K.T. Aust: Triple line corrosion in high purity nickel. Mater. Sci. Eng., A 113, 139 (1989).

    Article  Google Scholar 

  19. G. Gottstein, V. Sursaeva, and L.S. Shvindlerman: The effect of triple junctions on grain boundary motion and grain microstructure evolution. Interface Sci. 7, 273 (1999).

    Article  CAS  Google Scholar 

  20. L.S. Shvindlerman and G. Gottstein: Grain boundary and triple junction migration. Mater. Sci. Eng., A 302, 141 (2001).

    Article  Google Scholar 

  21. G. Gottstein, Y. Ma, and L.S. Shvindlerman: Triple junction motion and grain microstructure evolution. Acta Mater. 53, 1535 (2005).

    Article  CAS  Google Scholar 

  22. I.M. Mikhailovskii and V.B. Rabukhin: Energy of boundaries in the vicinity of a triple junction. Phys. Status Solidi A 119, K113 (1990).

    Article  Google Scholar 

  23. P. Fortier, G. Palumbo, G.D. Bruce, W.A. Miller, and K.T. Aust: Triple line energy determination by scanning tunneling microscopy. Scr. Metall. 25, 177 (1991).

    Article  CAS  Google Scholar 

  24. B. Zhao, J.C. Verhasselt, L.S. Shvindlerman, and G. Gottstein: Measurement of grain boundary triple line energy in copper. Acta Mater. 58, 5646 (2010).

    Article  CAS  Google Scholar 

  25. S.G. Srinivasan, J.W. Cahn, H. Jonsson, and G. Kalonji: Excess energy of grain-boundary trijunctions: An atomistic simulation study. Acta Mater. 47, 2821 (1999).

    Article  CAS  Google Scholar 

  26. A.H. King: The geometric and thermodynamic properties of grain boundary junctions. Interface Sci. 7, 251 (1999).

    Article  CAS  Google Scholar 

  27. M. Upadhyay, L. Capolungo, V. Taupin, and C. Fressengeas: Grain boundary and triple junction energies in crystalline media: A disclination based approach. Int. J. Solids Struct. 48, 3176 (2011).

    Article  Google Scholar 

  28. G. Palumbo, S.J. Thorpe, and K.T. Aust: On the contribution on triple junctions to the structure and properties of nanocrystalline materials. Scr. Metall. Mater. 24, 1347 (1990).

    Article  CAS  Google Scholar 

  29. Y. Zhou, U. Erb, and K.T. Aust: The role of interface volume fractions in the nanocrystalline to amorphous transition in fully dense materials. Philos. Mag. 87, 5749 (2007).

    Article  CAS  Google Scholar 

  30. G. Palumbo, U. Erb, and K.T. Aust: Triple line disclination effects on the mechanical behavior of materials. Scr. Metall. Mater. 24, 2347 (1990).

    Article  CAS  Google Scholar 

  31. G. Palumbo, D.M. Doyle, A.M. El-Sherik, U. Erb, and K.T. Aust: Intercrystalline hydrogen transport in nanocrystalline nickel. Scr. Metall. Mater. 25, 679 (1991).

    Article  CAS  Google Scholar 

  32. M.R. Chellali, Z. Balogh, H. Bouchikhaoui, R. Schlesiger, P. Stender, L. Zheng, and G. Schmitz: Triple junction transport and the impact of grain boundary width in nanocrystalline Cu. Nano Lett. 12, 3448 (2012).

    Article  CAS  Google Scholar 

  33. A.M. Sherik, K. Boylan, U. Erb, G. Palumbo, and K.T. Aust: Grain-growth behavior of nanocrystalline nickel, in Structure and Properties of Interfaces in Materials, edited by W.A.T. Clark, U. Dahmen, and C.L. Briant (Mater. Res. Soc. Symp. Proc 238, Warrendale, PA), 1992) pp. 727–732.

    Google Scholar 

  34. N. Wang, Z. Wang, K.T. Aust, and U. Erb: Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique. Mater. Sci. Eng., A 237, 150 (1997).

    Article  Google Scholar 

  35. T.J. Rupert, J.R. Trelewicz, and C.A. Schuh: Grain boundary relaxation strengthening of nanocrystalline Ni–W alloys. Mater. Res. 27, 1285 (2012).

    Article  CAS  Google Scholar 

  36. W. Bollmann: The basic concept of the O-lattice theory. Surf. Sci. 31, 1 (1972).

    Article  CAS  Google Scholar 

  37. W. Bollmann: Crystal Lattices, Interfaces, Matrices (Geneva), 1982).

    Google Scholar 

  38. W. Bollmann: Triple line disclinations, representations, continuity and reactions. Philos. Mag. A 57, 637 (1988).

    Article  Google Scholar 

  39. W. Bollmann: Triple line disclinations in polycrystalline material. Mater. Sci. Eng., A 113, 129 (1989).

    Article  Google Scholar 

  40. W. Bollmann: The stress field of a model triple line disclination. Mater. Sci. Eng., A 136, 1 (1991).

    Article  Google Scholar 

  41. E.G. Doni and G.L. Bleris: Study of special triple junctions and faceted boundaries by means of the CSL model. Phys. Status Solidi A 110, 383 (1988).

    Article  Google Scholar 

  42. K.J. Kurzydlowski, B. Ralph, and A. Garbacz: The crystal texture effect on the characteristic of grain boundaries in polycrystals: Individual boundaries and three-fold edges. Scr. Metall. Mater. 29, 1365 (1993).

    Article  Google Scholar 

  43. G. Palumbo and K.T. Aust: A coincident axial direction (CAD) approach to the structure of triple junctions in polycrystalline materials. Scr. Metall. Mater. 24, 1771 (1990).

    Article  CAS  Google Scholar 

  44. R.H. Aborn and E.C. Bain: The nature of nickel-chromium rustless steels. Trans. Am. Soc. Steel Treating 18, 837 (1930).

    Google Scholar 

  45. A.B. Kinzel: Chromium carbide in stainless steel. Trans. Met. Soc. AIME 194, 469 (1952).

    Google Scholar 

  46. R. Stickler and A. Vinckier: Morphology of grain-boundary carbides and its influence on intergranular corrosion of 304 stainless steel. Trans. ASM 54, 362 (1961).

    CAS  Google Scholar 

  47. K.T. Aust: Intergranular corrosion of austenitic stainless steels. Trans. Metall. Soc. AIME 245, 2117 (1969).

    CAS  Google Scholar 

  48. V. Cihal: Intergranular corrosion of steels and alloys, in Materials Science Monographs No.18 (Elsevier Publishing Co., New York, 1984); p. 80.

    Google Scholar 

  49. S.M. Bruemmer: Grain boundary chemistry and intergranular failure of autenitic stainless steels. Mat. Sci. Forum 46, 309 (1989).

    Article  CAS  Google Scholar 

  50. G. Palumbo and K.T. Aust: Structure dependence of intergranular corrosion in high purity nickel. Acta Metall. Mater. 38, 2343 (1990).

    Article  CAS  Google Scholar 

  51. R.J. Gay and G.F. Vander Voort: “Metallography,” in Metals Handbook Desk Edition, edited by H.E. Boyer and T.L. Gall, (ASM American Society for Metals, Metals Park, OH, 1985) p. 35.

    Google Scholar 

  52. V. Randle: Microstructure Determination and its Applications (The Institute of Materials, London, 1992), p. 70.

    Google Scholar 

  53. Y. Zhou, U. Erb, K.T. Aust, and G. Palumbo: Effects of grain boundary structure on carbide precipitation in 304L stainless steel. Scr. Mater. 45, 49 (2001).

    Article  CAS  Google Scholar 

  54. H. Kokawa, M. Shimada, and Y.S. Sato: Grain-boundary structure and precipitation in sensitized austenitic stainless steel. JOM 52, 34 (2000).

    Article  CAS  Google Scholar 

  55. R.E. Williford, C.F. Windisch Jr., and R.H. Jones: In situ observations of the early stages of localized corrosion in type 304SS using the electrochemical atomic force microscope. Mater. Sci. Eng., A 288, 54 (2000).

    Article  Google Scholar 

  56. H. Grimmer, W. Bollmann, and DH Warrington: Coincidence-site lattices and complete pattern-shift in cubic crystals. Acta Crystallogr., Sect. A: Found. Crystallogr. 30, 197 (1974).

    Article  Google Scholar 

  57. P. Fortier, K.T. Aust, and W.A. Miller: Effects on symmetry, texture and topology on triple junction character distribution in polycrystalline materials. Acta Metall. Mater. 43, 339 (1995).

    Article  CAS  Google Scholar 

  58. V. Randle and B. Ralph: The coincident axial direction (CAD) approach to grain boundary structure. J. Mater. Sci. 23, 934 (1988).

    Article  CAS  Google Scholar 

  59. D.G. Brandon: The structure of high-angle grain boundaries. Acta Metall. 14, 1479 (1966).

    Article  CAS  Google Scholar 

  60. S. Kobayashi, T. Inomata, H. Kobayashi, S. Tsurekawa, and T. Watanabe: Effects of grain boundary- and triple junction-character on intergranular fatigue crack nucleation in polycrystalline aluminum. J. Mater. Sci. 43, 3792 (2008).

    Article  CAS  Google Scholar 

  61. C. Hu, S. Xia, H. Li, T. Liu, B. Zhou, W. Chen, and N. Wang: Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control. Corros. Sci. 53, 1880 (2011).

    Article  CAS  Google Scholar 

  62. S. Kobayashi, S. Tsurekawa, and T. Watanabe: Grain boundary hardening and triple junction hardening in polycrystalline molybdenum. Acta Mater. 53, 1051 (2005).

    Article  CAS  Google Scholar 

  63. P.H. Pumphrey: A plane matching theory of high angle grain boundary structure. Scr. Metall. 6, 107 (1972).

    Article  CAS  Google Scholar 

  64. B. Loberg and H. Norden: High resolution microscopy of grain boundary structure, in Grain Boundary Structure and Properties, edited by G.A. Chadwick and D.A. Smith (Academic Press, London, 1976), p. 1.

    Google Scholar 

  65. L.M. Clarebrough and C.T. Forwood: Secondary grain boundary dislocation nodes at the junction of three grains. Philos. Mag. A 55, 217 (1987).

    Article  CAS  Google Scholar 

  66. L. Priester and P. Yu: Triple junctions at mesoscopic, microscopic and nanoscopics scales. Mater. Sci. Eng., A 188, 113 (1994).

    Article  Google Scholar 

  67. G. Palumbo and K.T. Aust: Comments on triple junctions at mesoscopic, microscopic and nanoscopics scales. Mater. Sci. Eng., A 205, 254 (1996).

    Article  CAS  Google Scholar 

  68. G.P. Dimitrakopulos, T.H. Krakostas, and R.C. Pond: The defect character of interface junction lines. Interface Sci. 4, 129 (1996).

    CAS  Google Scholar 

  69. P. Müllner: Disclinations at grain boundary triple junctions: Between Bollmann disclinations and Volterra disclinations. Mater. Sci. Forum 294-296, 353 (1999).

    Article  Google Scholar 

  70. W.T. Read and W. Shockley: Dislocation models of crystal grain boundaries. Phys. Rev. 78, 275 (1950).

    Article  CAS  Google Scholar 

  71. A.E. Romanov and V.I. Vladimirov: Disclination in crystalline solids, in Dislocations in Solids, Vol. 9, edited by F.R.N. Nabarro (Elsevier Publishing Co., Amsterdam, 1992), p.191.

    Google Scholar 

Download references

Acknowledgments

Financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Ontario Research Fund-Research Excellence (ORF-RE) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijian Zhou.

Appendices

Appendix - Triple junction characterization procedure

Here an example is presented to illustrate the calculation procedures of the four triple junction (TJ) models used in this study to determine the triple junction line characters.

First, the measured OIM orientation data are converted into rotation matrices, i.e., R1, R2, and R3 for grains 1, 2, and 3, respectively,

$$ {R1} \;\;\;\; = \;\;\;\; {\left[ { {1.4871}\;\;\;\;{.8178}\;\;\;\;{ -.3065} } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { { -.8663}\;\;\;\;{.4970}\;\;\;\;{ -.0507} } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { {.1108}\;\;\;\;{.2902}\;\;\;\;{.9505} } \right],}{} \;\;\;\; {} \;\;\;\; {} \\ {R2} \;\;\;\; = \;\;\;\; {\left[ { {.2557}\;\;\;\;{.9362}\;\;\;\;{ -.2410} } \right]} {} \;\;\;\; {} \;\;\;\; {\left[ { { -.8399}\;\;\;\;{.3386}\;\;\;\;{.4242}} \right]} {} \;\;\;\; {} \;\;\;\; {\left[ { {.4787}\;\;\;\;{.09392}\;\;\;\;{.8729} } \right],} \\ $$
FIG. A1
figure A1

A schematic TJ with three grains, 1, 2, and 3, and three GBs, Ra, Rb, and Rc. The arrows show the sequence of misorientation calculation. The three grain orientation data from a sample TJ in terms of three Euler angles with Bunge’s notation are:

$$ {{\text{grain}}\,{\text{1:}}\left[ { {159.1}\;\;\;\;{18.1}\;\;\;\;{260.6} } \right]} \\ {{\text{grain}}\,{\text{2:}}\left[ { {101.1}\;\;\;\;{29.2}\;\;\;\;{330.4} } \right].} \\ {{\text{grain}}\,{\text{3:}}\left[ { {43.5}\;\;\;\;{50.0}\;\;\;\;{42.4} } \right]} \\ $$
$$ {R3} \;\;\;\; = \;\;\;\; {\left[ { {.2373}\;\;\;\;{.8227}\;\;\;\;{.5165} } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { { -.8159}\;\;\;\;{ -.1198}\;\;\;\;{.5657} } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { {.5273}\;\;\;\;{ -.5557}\;\;\;\;{.6428} } \right].} \\ $$

Then the GB misorientations between two adjacent grains in reference to the crystal coordinates are calculated as follows (note that R−1 is an inverse matrix of R):

$$ {{R_a}} \;\;\;\; = \;\;\;\; {\left[ { {.9052}\;\;\;\;{.1732}\;\;\;\;{ -.3881} } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { { -.06935}\;\;\;\;{.9612}\;\;\;\;{.2671} } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { {.41928}\;\;\;\;{ -.2149}\;\;\;\;{.8821} } \right],} \\ {} \;\;\;\; {} \;\;\;\; {} \\ {{R_b}} \;\;\;\; = \;\;\;\; {\left[ { {.9984}\;\;\;\;{04502}\;\;\;\;{ -.3531} } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { { -.004540}\;\;\;\;{.6775}\;\;\;\;{.7355} } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { {.05704}\;\;\;\;{ -.7342}\;\;\;\;{.6766} } \right],} \\ {} \;\;\;\; {} \;\;\;\; {} \\ {{R_c}} \;\;\;\; = \;\;\;\; {\left[ { {.8808}\;\;\;\;{ -.05836}\;\;\;\;{.4699} } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { {.4430}\;\;\;\;{.4520}\;\;\;\;{ -.7743} } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { { -.1672}\;\;\;\;{.8901}\;\;\;\;{.4240} } \right].} \\ $$

Determination of TJ character using Bollmann’s model

The main idea in this model is to determine a unimodular matrix that leads to the nearest neighbor relation (NNR) with the adjacent grain. The starting point is the f.c.c. structure matrix S as the crystal unit cell,

$$ S \;\;\;\; = \;\;\;\; {\left[ { {.5}\;\;{ - 5}0 } \right]} \\ {} \;\;\;\; {} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\left[ { {.5}\;\;\;\;{.5}\;\;\;\;{.5} } \right]} \\ {} \;\;\;\; {} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; {\left[ { 0\;\;\;\;0\;\;\;\;\;{.5} } \right].} \\ $$

Convert the GB matrices with reference to the unit cell, e.g. Ra, and get a new form of GB matrix, e.g. Ra

$$ {Ra'} \;\;\;\; { = {{\text{S}}^{ - 1}}{R_a}S = } \;\;\;\; {\left[ { {0.8829}\;\;\;\;{0.4663}\;\;\;\;{0.1731} } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { { - 0.1955}\;\;\;\;{1.198}\;\;\;\;{0.3880} } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { {0.2044}\;\;\;\;{ -.6341}\;\;\;\;{0.6672} } \right].} \\ $$

Then Ra ′ is decomposed into external (M_ext) and internal (M_int) matrix. The entries in the external matrix must be integers, whereas those in the internal matrix have values between 0 and 1 so that the column vectors in M_int are all inside the unit cell:

$$ {} \;\;\;\; {{{R'}_a} = M\_{\text{ext + }}M\_{int}} \;\;\;\; {} \\ {\left[ { {.8829}\;\;\;\;{.4663}\;\;\;\;{.1731} } \right]} \;\;\;\; {} \;\;\;\; {\left[ { 000 } \right]} \\ {\left[ { { -.1955}\;\;\;\;{1.198}\;\;\;\;{.3880} } \right]} \;\;\;\; = \;\;\;\; {\left[ { { - 1}10 } \right]} \\ {\left[ { {.2044}\;\;\;\;{ -.6341}\;\;\;\;{.6672} } \right]} \;\;\;\; {} \;\;\;\; {\left[ { 0{ - 1}0 } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { {.8829}\;\;\;\;{.4663}\;\;\;\;{.1731} } \right]} \\ {} \;\;\;\; {} \;\;\;\; { + \left[ { {.8045}\;\;\;\;{.1984}\;\;\;\;{.3880} } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { {.2044}\;\;\;\;{.3659}\;\;\;\;{.6672} } \right]} \\ $$

The next step is to find the closest corner of the unit cell for each column vector in M_int. Since the unit cell coordinate is a nonorthonormal coordinate, the metric tensor G is required for the calculation of the (square) distance \({d_i}^2\) between a vector, vi, and a corner, ci,

$$d_i^2 = \Delta x_i^{\text{T}}G{x_i},$$

where G = STS, and Δxi = vici. The superscript T means the transpose of a vector or a matrix. Table A1 shows the results of \({d_i}^2\), whereby the minimum values of \({d_1}^2,{d_2}^2,\), and \({d_3}^2\) (bold numbers) correspond to the corners of [1 1 0], [0 0 1], and [0 0 1], respectively. A matrix consisting of the corners of least distance, M_cor, is then constructed, using the corner coordinates as the column vectors, respectively,

$$ {M\_{\text{cor}}} \;\;\;\; = \;\;\;\; {\left[ { 100 } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { 100 } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { 011 } \right].} \\ $$
Table A1
figure TabA1

Distances between internal vectors and unit cell corners.

Adding M_ext to M_cor leads to a reshaped unit cell, M_res. Note that the determinant of M_res has to be +1. Otherwise choose slightly larger values of \({{\text{d}}_{\text{i}}}^2\) until the determinant is + 1. In this case:

$$ {M\_{\text{res}} = M\_{\text{ext}} + M\_cor} \\ {\left[ { 100 } \right] {}\;\;\;\;{\left[ { 000 } \right] {}\;\;\;\;{\left[ { 100 } \right]} } } \\ {\left[ { 010 } \right] ={\left[ { { - 1}10 } \right] +{\left[ { 100 } \right]} } } \\ {\left[ { 001 } \right] {}\;\;\;\;{\left[ { 0{ - 1}0 } \right] {}\;\;\;\;{\left[ { 011 } \right]} } } \\ $$

The unimodular matrix, Ua, is then obtained for Ra, the GB between grains 1 and 2 is given by

$$ {{U_a}} \;\;\;\; = \;\;\;\; {M\_{\text{re}}{{\text{s}}^{ - 1}}} \;\;\;\; = \;\;\;\; {\left[ { 100 } \right]} \\ {} \;\;\;\; {} \;\;\;\; {} \;\;\;\; {} \;\;\;\; {\left[ { 010 } \right]} \\ {} \;\;\;\; {} \;\;\;\; {} \;\;\;\; {} \;\;\;\; {\left[ { 001 } \right]} \\ $$

Likewise, Ub and Uc can be derived as

$$ {} \;\;\;\; {\left[ { 1{ - 1}\;\;\;\;{ - 1} } \right]} \;\;\;\; {} \;\;\;\; {} \;\;\;\; {\left[ { 111 } \right]} \\ {{U_b}} \;\;\;\; {\left[ { 00{ - 1} } \right]} \;\;\;\; {{U_c}} \;\;\;\; = \;\;\;\; {\left[ { 011 } \right]} \\ {} \;\;\;\; {\left[ { 011 } \right]} \;\;\;\; {} \;\;\;\; {} \;\;\;\; {\left[ { 0{ - 1}0 } \right]} \\ ,$$

and the TJ line character, T, can be readily determined as

$$ {} \;\;\;\; {\left[ { 10{ - 1} } \right]} \\ {{\text{T}}{U_c}{U_b}{U_a}} \;\;\;\; {\left[ { 010 } \right]} \\ {} \;\;\;\; {\left[ { 001 } \right]} \\ .$$

For this particular TJ, it is a U-line because T is not identity.

Determination of TJ character using the CSL/GB model

The OIM software is capable of identifying a CSL GB with Σ value using preset angle deviation allowance. In this study, two criteria were used for the deviation, namely, the Brandon criterion (BR) ΔθBR = 15° Σ−0.5 and the Palumbo—Aust criterion (PA) ΔθPA = 15° Σ−5/6. The results are shown in Table A2 for the same sample triple junction, where Rd stands for random.

Table A2
figure TabA2

Σ values of the three GBs using BR and PA criterion.

According to the BR criterion, the TJ has two CSL GBs, while it has no CSL GB using the PA criterion. Therefore, this is a BR2 or PA0 triple junction.

Determination of TJ character using the CAD model and the PM/GB model

For both models, the first step is to construct a list of ∏ values and deviation allowances (ΔθCAD = 20.25 ∏−0.5) as shown in Table A3.

Table A3
figure TabA3

The list of CAD and its ∏ value and deviation allowance.

Because of the symmetry, different misorientation matrices can be used to describe a given GB. It is crucial to use the matrix that gives the least rotation angle with the axis pointing into the standard stereographic triangle ([100], [110], [111]), the so-called disorientation matrix.

To do this, the trace (sum of the diagonal elements) of a GB matrix, e.g. Rb, is maximized by interchanging rows and columns of the matrix. It results in Rb _max:

$$ {{R_b}\_\max } \;\;\;\; = \;\;\;\; {\left[ { {0.9984}\;\;\;\;{ -.03531}\;\;\;\;{0.04502} } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { { - 0.004540}\;\;\;\;{0.7355}\;\;\;\;{0.66775} } \right]} \\ {} \;\;\;\; {} \;\;\;\; {\left[ { { - 0.05704}\;\;\;\;{ -.6466}\;\;\;\;{0.7342} } \right].} \\ $$

Then Rb max is converted into angle-axis pair format,

$${{\theta }}\left[ { {{\text{u,}}}\;\;\;\;{{\text{v,}}}\;\;\;\;{\text{w}} } \right] = 42.79^\circ \left[ { { - 43.97}\;\;\;\;{3314}\;\;\;\;{1.000} } \right].$$

The entries of the axis is re-arranged so that u ≥ v ≥ w ≥ 0 to obtain the axis pointing correctly. This leads to a new angle-axis pair:

$$42.79^\circ \left[ { {43.97}\;\;\;\;{3314}\;\;\;\;{1.000} } \right].$$

Converting the pair back into the matrix gives the disorientation matrix, Rb dis, between grains 2 and 3:

$$ {{R_{b\_{\text{dis}}}}}={\left[ { {0.9984}\;\;\;\;{0.004524}\;\;\;\;{0.05704} } \right]} \\ {}\;\;\;\;{}\;\;\;\;{\left[ { {0.03532}\;\;\;\;{0.7355}\;\;\;\;{ -.6766} } \right]} \\ {}\;\;\;\;{}\;\;\;\;{\left[ { { - 0.04501}\;\;\;\;{0.6775}\;\;\;\;{0.7342} } \right].} \\ $$

Beginning with CAD = [1, 1, 1] or ∏ = 3, grain 2 is taken as reference grain. So the CAD vector, V1, in grain 2, is V1 = [1, 1, 1], and the CAD vector, V2, in the adjacent grain (grain 3) is

$$V2 = {R_b}\_{\text{dis}}V1 = \left[ {1.060,0.09424,1.367} \right].$$

The angle, θb, between V1 and V2, is obtained using the vector scalar product:

$$V{\text{1}} \cdot V{\text{2 = }}\left| {V{\text{1}}} \right|\left| {V{\text{2}}} \right|\cos {{{\theta }}_b}.$$

So θb = 32.82°, which is larger than the deviation allowance, i.e., 11.7° (see Table A3). Moving on to ∏ = 4 or CAD = [2, 0, 0], and repeating the procedure gives V1 = [2, 0, 0], and V2:

$$V2 = {R_b}\_{\text{dis}}V1 = \left[ {1.997,0.07064, -.09002} \right].$$

Since θb = 3.28°, smaller than 10.1° (see Table A3), this is a ∏4 GB. Likewise, Rc is found to be a ∏8 GB with the deviation angle of 3.41°, while Ra is a random GB because all its deviation angles up to ∏ = 20 are greater than the allowances. The results are summarized in Table A4.

Table A4
figure TabA4

TJ characters of the CAD and PM/GB models.

Therefore, according to the CAD model, the triple junction is a random TJ since no common ∏ ≤ 20 value is found among three GBs.

The same TJ is defined as a PM2 triple junction because it has two special GBs, ∏8 and ∏4 according to the PM/GB model (Table A4).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Palumbo, G., Aust, K.T. et al. Triple junction structure and carbide precipitation in 304L stainless steel. Journal of Materials Research 28, 1589–1600 (2013). https://doi.org/10.1557/jmr.2013.148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.148

Navigation