Skip to main content

Advertisement

Log in

Effect of Mn content on the microstructure and mechanical properties of (Ti,Mn)Al/Al2O3 in situ composites prepared by hot pressing

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

(Ti,Mn)Al/Al2O3 composites were successfully synthesized by reactive hot pressing from Ti-Al-TiO2-MnO2 system. The effect of Mn coming from the Al-MnO2 reaction on the microstructure and mechanical properties of (Ti,Mn)Al/Al2O3 in situ composites was investigated in detail. The results show that the as-prepared products are mainly composed of (Ti,Mn)Al matrix (including a little of Ti3Al) and Al2O3 particles, together with a few amount of Al77.5Mn22.5 phases. The (Ti,Mn)Al matrix is refined and the in situ generated Al2O3 particles distribute uniformly on the boundaries of (Ti,Mn)Al by incorporation of Mn. The (Ti,Mn)Al/Al2O3 composite with 1.92 wt% Mn possesses the best mechanical properties. Compared with Mn-free samples obtained from Ti-Al-TiO2 system, the hardness, flexural strength, and fracture toughness are enhanced by 53.46%, 76.49%, and 64.21%, respectively. The strengthening and toughening mechanisms were also discussed specifically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Table III
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.Y. Xiang, F. Wang, J.F. Zhu, and X.F. Wang: Mechanical properties and microstructure of Al2O3/TiAl in situ composites doped with Cr2O3. Mater. Sci. Eng., A 528 (9), 3337 (2011).

    Article  Google Scholar 

  2. L.M. Peng, Z. Li, H. Li, J.H. Wang, and M. Gong: Microstructural characterization and mechanical properties of TiAl-Al2Ti4C2-Al2O3-TiC in situ composites by hot-press-aided reaction synthesis. J. Alloys Compd. 414 (1–2), 100 (2006).

    Article  CAS  Google Scholar 

  3. S. Heshmati-Manesh, M. Nili Ahmadabadi, H. Ghasemiarmaki, and H.R. Jafarian: Effect of initial microstructure and further thermomechanical processing on microstructural evolution in a Ti-47Al-2Cr alloyJ. Alloys Compd. 436 (1–2), 200 (2007).

    Article  CAS  Google Scholar 

  4. S.L. Shu, F. Qiu, B. Xing, S.B. Jin, Y.W. Wang, and Q.C. Jiang: Study of effect of Mn addition on the mechanical properties of Ti2AlC/TiAl composites through first principles study and experimental investigation. Intermetallics 28, 65 (2012).

    Article  CAS  Google Scholar 

  5. C.L. Yeh and R.F. Li: Formation of TiAl/Ti5Si3 and TiAl/Al2O3 in situ composites by combustion synthesis. Intermetallics 16 (1), 64 (2008).

    Article  CAS  Google Scholar 

  6. N. Claussen, D.E. Garcia, and R. Janssen: Reaction sintering of alumina-aluminide alloys (3A). J. Mater. Res. 11 (11), 2884 (1996).

    Article  CAS  Google Scholar 

  7. Y.H. Wang, J.P. Lin, Y.H. He, X. Lu, Y.L. Wang, and G.L. Chen: Microstructure and mechanical properties of high Nb containing TiAl alloys by reactive hot pressing. J. Alloys Compd. 461 (1–2), 367 (2008).

    Article  CAS  Google Scholar 

  8. Y.W. Kim: Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy. Acta. Metall. 40 (6), 1121 (1992).

    Article  CAS  Google Scholar 

  9. X.F. Wang, F. Wang, J.F. Zhu, and L.Y. Xiang: Reinforcing and toughening of TiAl composites by doping Sm2O3. Trans. Nonferrous Met. Soc. China 21 (6), 1263 (2011).

    Article  CAS  Google Scholar 

  10. Y.Y. Chen, H.Z. Niu, F.T. Kong, and S.L. Xiao: Microstructure and fracture toughness of a ß phase containing TiAl alloy. Intermetallics 19 (10), 1405 (2011).

    Article  CAS  Google Scholar 

  11. M.L. Van Meter, S.L. Kampe, and L. Christodoulou: Mechanical properties of near-? titanium aluminides reinforced with high volume percentages of TiB2. Scr. Mater. 34 (8), 1251 (1996).

    Article  Google Scholar 

  12. O.N. Senkov, M. Cavusoglu, and F.H. Froes: Synthesis and characterization of a TiAl/Ti5Si3 composite with a submicrocrystalline structure. Mater. Sci. Eng., A 300 (1–2), 85 (2001).

    Article  Google Scholar 

  13. N. Forouzanmehr, F. Karimzadeh, and M.H. Enayati: Synthesis and characterization of TiAl/a-Al2O3 nanocomposite by mechanical alloying. J. Alloys Compd. 478 (1–2), 257 (2009).

    Article  CAS  Google Scholar 

  14. J.X. Chen and Y.C. Zhou: Strengthening of Ti3AlC2 by incorporation of Al2O3. Scr. Mater. 50 (6), 897 (2004).

    Article  CAS  Google Scholar 

  15. N. Travitzkya, I. Gotmanb, and N. Claussen: Alumina–Ti aluminide interpenetrating composites: Microstructure and mechanical properties. Mater. Lett. 57 (22–23), 3422 (2003).

    Article  Google Scholar 

  16. Y.F. Shena, Z.G. Zou, Z.G. Xiao, K. Liu, F. Long, and Y. Wu: Properties and electronic structures of titanium aluminides–alumina composites from in-situ SHS process. Mater. Sci. Eng., A 528 (4–5), 2100 (2011).

    Article  Google Scholar 

  17. Y.J. Du, S.Y. Li, K. Zhang, and K. Lu: BN/Al composite formation by high-energy ball milling. Scr. Mater. 36 (1), 7 (1997).

    Article  CAS  Google Scholar 

  18. M. Emamy, M. Mahta, and J. Rasizadeh: Formation of TiB2 particles during dissolution of TiAl3 in Al–TiB2 metal matrix composite using an in situ technique. Compos. Sci. Technol. 66 (7–8), 1063 (2006).

    Article  CAS  Google Scholar 

  19. T.T. Ai: Microstructure and mechanical properties of in-situ synthesized Al2O3/TiAl composites. Chin. J. Aeronaut. 21 (6), 559 (2008).

    Article  Google Scholar 

  20. L.G. Zhou, L. Dong, L.L. He, and C.B. Zhang: Ab initio pseudopotential calculations on the effect of Mn doped on lattice parameters of L10 TiAl. Intermetallics 8 (5–6), 637 (2000).

    Article  CAS  Google Scholar 

  21. S.X. Mao, N.A. McMinn, and N.Q. Wu: Processing and mechanical behaviour of TiAl/NiAl intermetallic composites produced by cryogenic mechanical alloying. Mater. Sci. Eng., A 363 (1–2), 275 (2003).

    Article  Google Scholar 

  22. Z.J. Lin, M.S. Li, and Y.C. Zhou: Tem investigations on layered ternary ceramics. J. Mater. Sci. Technol. 32 (2), 145 (2007).

    Google Scholar 

  23. Z.Q. Yu, G.H. Wu, D.L. Sun, and L.T. Jiang: Coating of Y2O3 additive on Al2O3 powder and its effect on the wetting behaviour in the system Al2O3p/Al. Mater. Lett. 57 (20), 3111 (2003).

    Article  CAS  Google Scholar 

  24. A. Contreras, E. Bedolla, and R. Pérez: Interfacial phenomena in wettability of TiC by Al-Mg alloys. Acta. Mater. 52 (4), 985 (2004).

    Article  CAS  Google Scholar 

  25. R. Bohn, T. Klassen, and R. Bormann: Room temperature mechanical behavior of silicon-doped TiAl alloys with grain sizes in the nano- and submicron-range. Acta Mater. 49 (2), 299 (2001).

    Article  CAS  Google Scholar 

  26. A.G. Paradkar, S.V. Kamat, A.K. Gogia, and B.P. Kashyap: On the validity of Hall-Petch equation for single-phase ß Ti-Al-Nb alloys undergoing stress-induced martensitic transformation. Mater. Sci. Eng., A 520 (1–2), 168 (2009).

    Article  Google Scholar 

  27. J.F Zhu, W.W. Yang, H.B. Yang, and Fen Wang: Effect of Nb2O5 on the microstructure and mechanical properties of TiAl based composites produced by hot pressing. Mater. Sci. Eng., A 528 (21), 6642 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Foundation of Natural Science, China (Grant Nos. 51171096, 50802057) and the Graduate Innovation Fund of Shaanxi University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Zhang, K., Zhu, J. et al. Effect of Mn content on the microstructure and mechanical properties of (Ti,Mn)Al/Al2O3 in situ composites prepared by hot pressing. Journal of Materials Research 28, 1574–1581 (2013). https://doi.org/10.1557/jmr.2013.146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.146

Navigation