Skip to main content
Log in

The effect of substrate pore size on the network interconnectivity and electrical properties of dropcasted multiwalled carbon nanotube thin films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Four-layer multiwalled carbon nanotube (MWNT) thin films were deposited via dropcasting (1 mg/mL MWNTs and 10 mg/mL SDBS) onto filter papers that vary in pore size (1, 5, 25, and 40 um) to determine the effect of the underlying substrate structure on the in-plane properties of the films. The films (<100 nm thick) were dried using vacuum filtration, and drying in a 65 °C heater with and without a ceramic heating board. DC resistance of the films ranged from 6 × 10 to 9.3 × 109 Ω. Impedance spectroscopy analysis revealed a low and a high frequency inductive response and two parallel R-C circuits for the more conducting thin films. High resistance films were fit by a single RC circuit with a constant-phase element. The differences in the in-plane electrical responses of the different MWNT films can be explained by the degree of carbon nanotube surface coverage, obtained as a result of using different pore size filter papers. The drying method utilized also affected the CNT network formation and its resultant electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Table II
Fig. 6
Table III

Similar content being viewed by others

References

  1. S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. S. Iijima and T. Ichihashi: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993).

    Article  CAS  Google Scholar 

  3. W. Zhang, Z. Zhu, F. Wang, T. Wang, L. Sun, and Z. Wang: Chirality dependence of the thermal conductivity of carbon nanotubes. Nanotechnology 15, 936 (2004).

    Article  CAS  Google Scholar 

  4. B.Q. Wei, R. Vajtai, and P.M. Ajayan: Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79, 1172 (2001).

    Article  CAS  Google Scholar 

  5. L. Hu, D.S. Hecht, and G. Gruner: Carbon nanotube thin films: Fabrication, properties, and applications. Chem. Rev. 110, 5790 (2010).

    Article  CAS  Google Scholar 

  6. G. Gruner: Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 16, 3533 (2006).

    Article  CAS  Google Scholar 

  7. H. Zhu, J. Wei, K. Wang, and D. Wu: Applications of carbon materials in photovoltaic solar cells. Sol. Energy Mater. Sol. Cells 93, 1461 (2009).

    Article  CAS  Google Scholar 

  8. R.L. Muhlbauer and R.A. Gerhardt: A review on the synthesis of carbon nanotube thin films, in Carbon Nanotubes: Synthesis and Properties, edited by A.K. Mishra (Nova Science Publishers, Happauge, NY, 2012), pp. 107–156.

    Google Scholar 

  9. K. Yang, J. He, P. Puneet, Z. Su, M.J. Skove, J. Gaillard, T.M. Tritt, and A.M. Rao: Tuning electrical and thermal connectivity in multiwalled carbon nanotube buckypaper. J. Phys. Condens. Matter. 22, 334215 (2010).

    Article  Google Scholar 

  10. L. Huang, K. Chen, C. Peng, and R.A. Gerhardt: Highly conductive paper fabricated with multiwalled carbon nanotubes and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) by unidirectional drying. J. Mater. Sci. 46, 6648 (2011).

    Article  CAS  Google Scholar 

  11. L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L-F. Cui, and Y. Cui: Highly conductive paper for energy-storage devices. PNAS 106, 21490 (2009).

    Article  CAS  Google Scholar 

  12. D. Tobjork and R. Osterbacka: Paper electronics. Adv. Mater. 23, 1935 (2011).

    Article  Google Scholar 

  13. M.C. Barr, J.A. Rowehl, R.R. Lunt, J. Xu, A. Wang, C.M. Boyce, S.G. Im, V. Bulovic, and K.K. Gleason: Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv. Mater. 23, 3500 (2011).

    Article  CAS  Google Scholar 

  14. S.M. Lyth and S.R.P. Silva: Field emission from multiwall carbon nanotubes on paper substrates. Appl. Phys. Lett. 90, 173124 (2007).

    Article  Google Scholar 

  15. K. Kordas, T. Mustonen, G. Toth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, and P.M. Ajayan: Inkjet printing of electrically conductive patterns of carbon nanotubes. Small 2, 1021 (2006).

    Article  CAS  Google Scholar 

  16. R.L Muhlbauer and R.A. Gerhardt: Impedance spectroscopy of short multiwalled carbon nanotube networks deposited on a paper substrate: The evolution of in-plane and thru-plane properties. App. Phys. Lett. Submitted.

  17. W.A. de Heer, W.S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte: Aligned carbon nanotube films: Production and optical and electronic properties. Science 268, 845 (1995).

    Article  Google Scholar 

  18. J.R. Macdonald: Impedance spectroscopy. Ann. Biomed. Eng. 20, 289 (1992).

    Article  CAS  Google Scholar 

  19. R.A Gerhardt: Impedance and mobility spectra, in Encyclopedia of Condensed Matter Physics, edited by F. Bassani, G.L. Liedl and P. Wyder (Elsevier, New York, 2005), p. 350.

    Chapter  Google Scholar 

  20. S.M. Joshi and R.A. Gerhardt: Effect of annealing atmosphere (air vs. argon) and temperature on the electrical properties of spin coated colloidal indium tin oxide films. J. Mater. Sci. 48 (3), 1465 (2013).

    Article  CAS  Google Scholar 

  21. V.S. Kumar, G. Kelekanjeri, and R.A. Gerhardt: Characterization of microstructure fluctuations in Waspaloy exposed to 760 °C for times up to 2500 h. Electrochim. Acta 51, 1873 (2006).

    Article  Google Scholar 

  22. M.P. Garrett, I.N. Ivanov, R.A. Gerhardt, A.A. Puretsky, and D.B. Geohegan: Separation of junction and bundle resistance in single wall carbon nanotube percolation networks by impedance spectroscopy. Appl. Phys. Lett. 97, 163105 (2010).

    Article  Google Scholar 

  23. S.G. Louie: Electronic properties, junctions, and defects of carbon nanotubes, in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Vol. 80, edited by M.S. Dresselhaus, G. Dresselhaus and P. Avouris (Springer, Berlin, 2001), p. 113.

    Article  CAS  Google Scholar 

  24. D. Hecht, L. Hu, and G. Gruner: Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl. Phys. Lett. 89, 133112 (2006).

    Article  Google Scholar 

  25. P.N. Nirmalraj, P.E. Lyons, S. De, J.N. Coleman, and J.J. Boland: Electrical conductivity in single-walled carbon nanotube networks. Nano Lett. 9, 3890 (2009).

    Article  CAS  Google Scholar 

  26. C.J. Capozzi and R.A. Gerhardt: Correlation of the ac electrical conductivity and the microstructure of PMMA/ITO nanocomposites that possess phase-segregated microstructures. J. Phys. Chem. C 112, 19372 (2008).

    Article  CAS  Google Scholar 

  27. B.D. Bertram, R.A. Gerhardt, and J.W. Schultz: Impedance response and modeling of composites containing aligned semiconductor whiskers: Effects of dc-bias partitioning and percolated-cluster length, topology, and filler interfaces. J. Appl. Phys. 111, 124913 (2012).

    Article  Google Scholar 

  28. G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach, and J.H. Sluyters: The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial Electrochem. 176, 275 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Boeing Fellowship and Georgia Tech IGERT: Nanomaterials for Energy Storage and Conversion for RLM’s support and the Institute for Paper Science and Technology Alumni Association Scholarship Fund for SMJ’s support in completing this project. RAG further acknowledges the US Department of Energy Basic Energy Sciences Program under DE-FG02ER46035 for additional support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario A. Gerhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muhlbauer, R.L., Joshi, S.M. & Gerhardt, R.A. The effect of substrate pore size on the network interconnectivity and electrical properties of dropcasted multiwalled carbon nanotube thin films. Journal of Materials Research 28, 1617–1624 (2013). https://doi.org/10.1557/jmr.2013.143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.143

Navigation