Skip to main content
Log in

Synthesis of porous Li2MnO3-LiNi1/3Co1/3Mn1/3O2 nanoplates via colloidal crystal template

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The porous Li1.2Ni0.13Co0.13Mn0.54O2 nanoplate is prepared by colloidal crystal template assembled by the poly (methyl methacrylate) (PMMA) beads. Scanning electron microscopy and transmission electron microscopy results show that the nanoplates of porous solid solution cathodes are composed of nanoparticles with a size range of 30 nm, which interweave together forming an open porous structure. Electrochemical tests show that porous Li1.2Ni0.13Co0.13Mn0.54O2 cathode could deliver higher discharge capacity than that of bulk Li1.2Ni0.13Co0.13Mn0.54O2 cathode at all C-rates. The enhanced structural stability reflected by high ratios of integrated Intensity I(003)/I(104) and lattice parameters c/a, high specific surface area, a fast reaction and ionic diffusion kinetics of the nanoplates are considered attributable to the improved electrochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE I.
FIG. 5.
FIG. 6.

Similar content being viewed by others

REFERENCES

  1. C.S. Johnson, J-S. Kim, C. Lefief, N. Li, J.T. Vaughey, and M.M. Thackeray: The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1-x)LiMn0.5Ni0.5O2 electrodes. Electrochem. Commun. 6, 1085 (2004).

    Article  CAS  Google Scholar 

  2. J. Liu, Q.Y. Wang, B.R. Jayan, and A. Manthiram: Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. Electrochem. Commun. 12, 750 (2010).

    Article  CAS  Google Scholar 

  3. S-H. Kang, P. Kempgens, S. Greenbaum, A.J. Kropf, K. Amine, and M.M. Thackeray: Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5−xNi0.5−xCo2x, 0 ≤ x ≤ 0.5). J. Mater. Chem. 17, 2069 (2007).

    Article  CAS  Google Scholar 

  4. Z. Lu and J.R. Dahn: Understanding the anomalous capacity of Li/Li [NixLi (1/3− 2x/3) Mn (2/3− x/3)]O2 cells using in situ x-ray diffraction and electrochemical studies. J. Electrochem. Soc. 149, A815 (2002).

    Article  CAS  Google Scholar 

  5. J. Liu, B.R. Jayan, and A. Manthiram: Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. J. Phys. Chem. C 114, 9528 (2010).

    Article  CAS  Google Scholar 

  6. N. Yabuuchi, K. Yoshii, S.T. Myung, I. Nakai, and S. Komaba: Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 133, 4404 (2011).

    Article  CAS  Google Scholar 

  7. P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, and G.D. Stucky: Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152 (1998).

    Article  CAS  Google Scholar 

  8. P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, and G.D. Stucky: Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 11, 2813 (1999).

    Article  CAS  Google Scholar 

  9. F.B. Su, J.H. Zeng, P. Bai, L. Lv, P. Guo, H. Sun, H. Li, J. Yu, J. Lee, and X. Zhao: Template synthesis of mesoporous carbon microfibers as a catalyst support for methanol electrooxidation. Ind. Eng. Chem. Res. 46, 9097 (2007).

    Article  CAS  Google Scholar 

  10. J.W. Long, M.B. Sassin, A.E. Fischer, and D.R. Rolison: Multifunctional MnO2−carbon nanoarchitectures exhibit battery and capacitor characteristics in alkaline electrolytes. J. Phys. Chem. C 113, 17595 (2009).

    Article  CAS  Google Scholar 

  11. Z.Y. Wang, E.R. Kiesel, and A. Stein: Silica-free syntheses of hierarchically ordered macroporous polymer and carbon monoliths with controllable mesoporosity. J. Mater. Chem. 18, 2194 (2008).

    Article  CAS  Google Scholar 

  12. Z.Y. Wang, M.A. Fierke, and A. Stein: Porous carbon/Tin (IV) oxide monoliths as anodes for lithium-ion batteries. J. Electrochem. Soc. 155, A658 (2008).

    Article  CAS  Google Scholar 

  13. A.H. Lu, W. Schmidt, B. Spliethoff, and F. Schüth: Synthesis of ordered mesoporous carbon with bimodal pore system and high pore volume. Adv. Mater. 15, 1602 (2003).

    Article  CAS  Google Scholar 

  14. H. Yan, C.F. Blanford, J.C. Lytle, B. Carter, W.H. Smyrl, and A. Stein: Influence of processing conditions on structures of 3D ordered macroporous metals prepared by colloidal crystal templating. Chem. Mater. 13, 4314 (2001).

    Article  CAS  Google Scholar 

  15. C.M. Doherty, R.A. Caruso, B.M. Smarsly, and C.J. Drummond: Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chem. Mater. 21, 2895 (2009).

    Article  CAS  Google Scholar 

  16. C.M. Doherty, R.A. Caruso, and C.J. Drummond: High performance LiFePO4 electrode materials: Influence of colloidal particle morphology and porosity on lithium-ion battery power capability. Energy Environ. Sci. 3, 813 (2010).

    Article  CAS  Google Scholar 

  17. G.X. Wang, H. Liu, J. Liu, S. Qiao, G. Lu, P. Munroe, and H. Ahn: Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv. Mater. 22, 4944 (2010).

    Article  CAS  Google Scholar 

  18. A. Vu and A. Stein: Multiconstituent synthesis of LiFePO4/C composites with hierarchical porosity as cathode materials for lithium ion batteries. Chem. Mater. 23, 3237 (2011).

    Article  CAS  Google Scholar 

  19. S. Yuvaraj, L. Fan-Yuan, C. Tsong-Huei, and Y. Chuin-Tih: Thermal decomposition of metal nitrates in air and hydrogen environments. J. Phys. Chem. B 107, 1044 (2003).

    Article  CAS  Google Scholar 

  20. B.T. Holland, C.F. Blanford, T. Do, and A. Stein: Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem. Mater. 11, 795 (1999).

    Article  CAS  Google Scholar 

  21. T.W. Wang, O. Sel, I. Djerdj, and B. Smarsly: Preparation of a large mesoporous CeO2 with crystalline walls using PMMA colloidal crystal templates. Colloid Polym. Sci. 285, 1 (2006).

    Article  CAS  Google Scholar 

  22. W. Liu, G.C. Farrington, F. Chaput, and B. Dunn: Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the pechini process. J. Electrochem. Soc. 143, 879 (1996).

    Article  CAS  Google Scholar 

  23. D. Tonti, M.J. Torralvo, E. Enciso, I. Sobrados, and J. Sanz: Three-dimensionally ordered macroporous lithium manganese oxide for rechargeable lithium batteries. Chem. Mater. 20, 4783 (2008).

    Article  CAS  Google Scholar 

  24. H.W. Yan, C.F. Blanford, B.T. Holland, W.H. Smyrl, and A. Stein: General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion. Chem. Mater. 12, 1134 (2000).

    Article  CAS  Google Scholar 

  25. J.M. Zheng, X.B. Wu, and Y. Yang: A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery. Electrochim. Acta 56, 3071 (2011).

    Article  CAS  Google Scholar 

  26. Z.H. Lu, L.Y. Beaulieu, R.A. Donaberger, C.L. Thomas, and J.R. Dahn: Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2. J. Electrochem. Soc. 149, A778 (2002).

    Article  CAS  Google Scholar 

  27. C.S. Johnson, N. Li, J.T. Vaughey, S.A. Hackney, and M.M. Thackeray: Lithium-manganese oxide electrodes with layered-spinel composite structures xLi2MnO3·(1-x)Li1+yMn2-yO4 (0 < x <1, 0 ≤ y ≤ 0.33) for lithium batteries. Electrochem. Commun. 7, 528 (2005).

    Article  CAS  Google Scholar 

  28. D. Pasero, V. McLaren, S.D. Souza, and A.R. West: Oxygen nonstoichiometry in Li2MnO3: An alternative explanation for its anomalous electrochemical activity. Chem. Mater. 17, 345 (2005).

    Article  CAS  Google Scholar 

  29. Z.H. Chen and J.R. Dahn: Effect of ZrO2 coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5V. Electrochem. Solid-State Lett. 5, A213 (2002).

    Article  CAS  Google Scholar 

  30. X.M. Liu, W. Gao, and B. Ji: Synthesis of LiNi1/3Co1/3Mn1/3O2 nanoparticles by modified Pechini method and their enhanced rate capability. J Sol-Gel Sci. Technol. 61, 56 (2012).

    Article  CAS  Google Scholar 

  31. J.H. Kim, C.W. Park, and Y.K. Sun: Synthesis and electrochemical behavior of Li[Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2 cathode material. Solid State Ionics 164, 43 (2003).

    Article  CAS  Google Scholar 

  32. V. Subramanian, K. Karki, and B. Rambabu: Synthesis and electrochemical properties of submicron LiNi0.5Co0.5O2. Solid State Ionics 175, 315 (2004).

    Article  CAS  Google Scholar 

  33. C.H. Zhao, W.P. Kang, Q.B. Xue, and Q. Shen: Polymerization-pyrolysis-assisted nanofabrication of solid solution Li1.2Ni0.13Co0.13Mn0.54O2 for lithium-ion battery cathodes. J. Nanopart. Res. 14, 1240 (2012).

    Article  Google Scholar 

  34. C. Yu, G.S. Li, X.F. Guan, J. Zheng, L.P. Li, and T.W. Chen: Composites Li2MnO3·LiMn1/3Ni1/3Co1/3O2: Optimized synthesis and applications as advanced high-voltage cathode for batteries working at elevated temperatures. Electrochim. Acta 81, 283 (2012).

    Article  CAS  Google Scholar 

  35. Y.J. Hong, S.H. Choi, C.M. Sim, J.K. Lee, and Y.C. Kang: Effect of boric acid on the properties of Li2MnO3·LiNi0.5Mn0.5O2 composite cathode powders prepared by large-scale spray pyrolysis with droplet classifier. MRS Bull. 47, 4359 (2012).

    Article  CAS  Google Scholar 

  36. Y.K. Sun, M.J. Lee, C.S. Yoon, J. Hassoun, K. Amine, and B. Scrosati: The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv. Mater. 24, 1192 (2012).

    Article  CAS  Google Scholar 

  37. D-K. Lee, S-H. Park, K. Amine, H.J. Bang, J. Parakash, and Y-K. Sun: High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method. J. Power Sources 162, 1346 (2006).

    Article  CAS  Google Scholar 

  38. R. Santhanam and B. Rambabu: High rate cycling performance of Li1.05Ni1/3Co1/3Mn1/3O2 materials prepared by sol-gel and co-precipitation methods for lithium-ion batteries. J. Power Sources 196, 4313 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the Natural Science Foundation of China (Grant Nos. 11275121 and 21241002), Science and Technology Committee of Shanghai (Grant Nos. 11DZ110020 and 10ZR1411300), and Shanghai Leading Academic Disciplines Project (Grant No. S30109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Zhuang, H., Ma, Q. et al. Synthesis of porous Li2MnO3-LiNi1/3Co1/3Mn1/3O2 nanoplates via colloidal crystal template. Journal of Materials Research 28, 1505–1511 (2013). https://doi.org/10.1557/jmr.2013.136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.136

Navigation