Skip to main content
Log in

A facile in situ morphological characterization of smart genipin-crosslinked chitosan–poly(vinyl pyrrolidone) hydrogels

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Stable, responsive and autofluorescent genipin-crosslinked chitosan–poly(vinyl pyrrolidone) hydrogels have been synthesized. Morphological characterization techniques such as scanning electron microscopy, environmental scanning electron microscopy, and in situ confocal laser scanning microscopy (CLSM), in both reflectance and fluorescence modes, have been compared for their suitability to characterize the network structure of these hydrogels. CLSM is shown to be the optimal technique owing to the facile generation of the three-dimensional porous architecture and extra topographical information while the sample is immersed in the aqueous solution to which it will find application. CLSM is used in both reflectance and fluorescence modes to follow morphology variation as a function of time during swelling. Conveniently, acquisition via reflectance produces images with a higher degree of structural detail than fluorescence, widening the application of this method to characterize hydrogels where addition of a fluorescent probe, which may alter the native structure, is undesired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. T. Tanaka, D. Fillmore, S.T. Sun, I. Nishio, G. Swislow, and A. Shah: Phase transitions in ionic gels. Phys. Rev. Lett. 45(20), 1636 (1980).

    CAS  Google Scholar 

  2. B.D. Ratner and A.S. Hoffman: Synthetic hydrogels for biomedical applications. ACS Symp. Ser. 31, 1 (1976).

    CAS  Google Scholar 

  3. N.A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa: Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50(1), 27 (2000).

    CAS  Google Scholar 

  4. K.Y. Lee and D.J. Mooney: Hydrogels for tissue engineering. Chem. Rev. 101(7), 1869 (2001).

    CAS  Google Scholar 

  5. R.V. Ulijn, N. Bibi, V. Jayawarna, P.D. Thornton, S.J. Todd, R.J. Mart, A.M. Smith, and J.E. Gough: Bioresponsive hydrogels. Mater. Today 10(4), 40 (2007).

    CAS  Google Scholar 

  6. P. Gupta, K. Vermani, and S. Garg: Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discovery Today 7(10), 569 (2002).

    CAS  Google Scholar 

  7. H. Zhang, S. Mardyani, W.C.W. Chan, and E. Kumacheva: Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics. Biomacromolecules 7(5), 1568 (2006).

    CAS  Google Scholar 

  8. E.S. Lee, D. Kim, Y.S. Youn, K.T. Oh, and Y.H. Bae: A virus-mimetic nanogel vehicle. Angew. Chem. Int. Ed. 47(13), 2418 (2008).

    CAS  Google Scholar 

  9. V.R. Patel and M.M. Amiji: Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm. Res. 13(4), 588 (1996).

    CAS  Google Scholar 

  10. A. Tolaimate, J. Desbrières, M. Rhazi, A. Alagui, M. Vincendon, and P. Vottero: On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer 41(7), 2463 (2000).

    CAS  Google Scholar 

  11. O. Munjeri, J.H. Collett, and J.T. Fell: Hydrogel beads based on amidated pectins for colon-specific drug delivery: The role of chitosan in modifying drug release. J. Controlled Release 46(3), 273 (1997).

    CAS  Google Scholar 

  12. R.A.A. Muzzarelli: Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr. Polym. 77(1), 1 (2009).

    CAS  Google Scholar 

  13. I.A. Sogias, A.C. Williams, and V.V. Khutoryanskiy: Why is chitosan mucoadhesive? Biomacromolecules 9(7), 1837 (2008).

    CAS  Google Scholar 

  14. R. Jayakumar, D. Menon, K. Manzoor, S.V. Nair, and H. Tamura: Biomedical applications of chitin and chitosan based nanomaterials - a short review. Carbohydr. Polym. 82(2), 227 (2010).

    CAS  Google Scholar 

  15. E.I. Rabea, M.E.T. Badawy, C.V. Stevens, G. Smagghe, and W. Steurbaut: Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 4(6), 1457 (2003).

    CAS  Google Scholar 

  16. T. Kean and M. Thanou: Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Delivery Rev. 62(1), 3 (2010).

    CAS  Google Scholar 

  17. M.V. Risbud, A.A. Hardikar, S.V. Bhat, and R.R. Bhonde: pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J. Controlled Release 68(1), 23 (2000).

    CAS  Google Scholar 

  18. O.A.C. Monteiro and C. Airoldi: Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. Int. J. Biol. Macromol. 26(2–3), 119 (1999).

    CAS  Google Scholar 

  19. A. Singh, S.S. Narvi, P.K. Dutta, and N.D. Pandey: External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde. Bull. Mater. Sci. 29(3), 233 (2006).

    CAS  Google Scholar 

  20. W.S. Wan Ngah, C.S. Endud, and R. Mayanar: Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React. Funct. Polym. 50(2), 181 (2002).

    Google Scholar 

  21. H.C. Liang, W.H. Chang, H.F. Liang, M.H. Lee, and H.W. Sung: Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water-soluble carbodiimide. J. Appl. Polym. Sci. 91(6), 4017 (2004).

    CAS  Google Scholar 

  22. H.W. Sung, R.N. Huang, L.L.H. Huang, and C.C. Tsai: In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. J. Biomater. Sci., Polym. Ed. 10(1), 63 (1999).

    CAS  Google Scholar 

  23. F.L. Mi, Y.C. Tan, H.C. Liang, R.N. Huang, and H.W. Sung: In vitro evaluation of a chitosan membrane cross-linked with genipin. J. Biomater. Sci., Polym. Ed. 12(8), 835 (2001).

    CAS  Google Scholar 

  24. M.F. Butler, Y.F. Ng, and P.D.A. Pudney: Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J. Polym. Sci., Part A: Polym. Chem. 41(24), 3941 (2003).

    CAS  Google Scholar 

  25. Y.J. Hwang, J. Larsen, T.B. Krasieva, and J.G. Lyubovitsky: Effect of genipin crosslinking on the optical spectral properties and structures of collagen hydrogels. ACS Appl. Mater. Interfaces 3(7), 2579 (2011).

    CAS  Google Scholar 

  26. S.C. Chen, Y.C. Wu, F.L. Mi, Y.H. Lin, L.C. Yu, and H.W. Sung: A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J. Controlled Release 96(2), 285 (2004).

    CAS  Google Scholar 

  27. A. Higuchi, K. Shirano, M. Harashima, B.O. Yoon, M. Hara, M. Hattori, and K. Imamura: Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials 23(13), 2659 (2002).

    CAS  Google Scholar 

  28. L. Türker, A. Güner, F. Yigit, and O. Güven: Spectrophotometric behavior of polyvinylpyrrolidone in aqueous and nonaqueous media (I). Colloid Polym. Sci. 268(4), 337 (1990).

    Google Scholar 

  29. M.F. Zeng, Z.P. Fang, and C.W. Xu: Effect of compatibility on the structure of the microporous membrane prepared by selective dissolution of chitosan/synthetic polymer blend membrane. J. Membr. Sci. 230(1–2), 175 (2004).

    CAS  Google Scholar 

  30. J.R. Khurma, D.R. Rohindra, and A.V. Nand: Swelling and thermal characteristics of genipin crosslinked chitosan and poly(vinyl pyrrolidone) hydrogels. Polym. Bull. 54(3), 195 (2005).

    CAS  Google Scholar 

  31. Y. Liu, W. Chen, and H.I. Kim: PH-responsive release behavior of genipin-crosslinked chitosan/poly(ethylene glycol) hydrogels. J. Appl. Polym. Sci. 125(suppl. 2), E290 (2012).

    CAS  Google Scholar 

  32. J.R. Khurma and A.V. Nand: Temperature and pH sensitive hydrogels composed of chitosan and poly(ethylene glycol). Polym. Bull. 59(6), 805 (2008).

    CAS  Google Scholar 

  33. M. José Moura, M. Margarida Figueiredo, and M. Helena Gil: Rheological study of genipin cross-linked chitosan hydrogels. Biomacromolecules 8, 3823 (2007).

    Google Scholar 

  34. J.L. Holloway, A.M. Lowman, and G.R. Palmese: The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter 9(3), 826 (2013).

    CAS  Google Scholar 

  35. M.J.D. Nugent and C.L. Higginbotham: Investigation of the influence of freeze-thaw processing on the properties of polyvinyl alcohol/polyacrylic acid complexes. J. Mater. Sci. 41(8), 2393 (2006).

    CAS  Google Scholar 

  36. C.M. Hassan and N.A. Peppas: Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33(7), 2472 (2000).

    CAS  Google Scholar 

  37. P. Calvert: Hydrogels for soft machines. Adv. Mater. 21(7), 743 (2009).

    CAS  Google Scholar 

  38. D. McMullan: Scanning electron microscopy 1928-1965. Scanning 17(3), 175 (1995).

    CAS  Google Scholar 

  39. R. Kishi, H. Kihara, and T. Miura: Structural observation of heterogeneous poly(N-isopropyl acrylamide-co-acrylic acid) hydrogels in highly hydrated states. Colloid Polym. Sci. 283(2), 133 (2004).

    CAS  Google Scholar 

  40. K.M. Gattás-Asfura, E. Weisman, F.M. Andreopoulos, M. Micic, B. Muller, S. Sirpal, S.M. Pham, and R.M. Leblanc: Nitrocinnamate-functionalized gelatin: Synthesis and "smart" hydrogel formation via photo-cross-linking. Biomacromolecules 6(3), 1503 (2005).

    Google Scholar 

  41. G. Lu, K. Ling, P. Zhao, Z. Xu, C. Deng, H. Zheng, J. Huang, and J. Chen: A novel in situ-formed hydrogel wound dressing by the photocross-linking of a chitosan derivative. Wound Repair and Regeneration 18(1), 70 (2010).

    Google Scholar 

  42. S.W. Paddock: Principles and practices of laser scanning confocal microscopy. Appl. Biochem. Biotechnol., Part B: Molecular Biotechnol. 16(2), 127 (2000).

    CAS  Google Scholar 

  43. F. Fergg, F.J. Keil, and H. Quader: Investigations of the microscopic structure of poly(vinyl alcohol) hydrogels by confocal laser scanning microscopy. Colloid Polym. Sci. 279, 61 (2001).

    CAS  Google Scholar 

  44. M.E. Harmon, W. Schrof, and C.W. Frank: Fast-responsive semi-interpenetrating hydrogel networks images with confocal fluorescence microscopy. Polymer 44, 6927 (2003).

    CAS  Google Scholar 

  45. H. Bodugoz-Senturk, C.E. Macias, J.H. Kung, and O.K. Muratoglu: Poly(vinyl alcohol)-acrylamide hydrogels as load-bearing cartilage substitute. Biomaterials 30, 589 (2009).

    CAS  Google Scholar 

  46. H.H. Trieu and S. Qutubuddin: Polyvinyl alcohol hydrogels I. Microscopic structure by freeze-etching and critical point drying techniques. Colloid Polym. Sci. 272(3), 301 (1994).

    CAS  Google Scholar 

  47. A. Lamprecht, U.F. Schäfer, and C.M. Lehr: Characterization of microcapsules by confocal laser scanning microscopy: Structure, capsule wall composition and encapsulation rate. Eur. J. Pharm. Biopharm. 49(1), 1 (2000).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the UK Engineering and Physical Sciences Research Council (EPSRC) Grant No. EP/H003908/1 for funding this research. G.A.H would also like to acknowledge the School of Chemical Engineering and Advanced Materials for funding his PhD studies. We are grateful to A. Lane for the use of FD equipment, T. Davey and B. Walker of the Electron Microscopy Research Services at Newcastle University for their assistance with SEM imaging, P Carrick of the Advanced Material and Chemical Analysis facility for ESEM imaging, and T. Booth and A. Laude of the Bio-Imaging Unit at Newcastle University for their help with confocal microscopy studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn A. Hurst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurst, G.A., Novakovic, K. A facile in situ morphological characterization of smart genipin-crosslinked chitosan–poly(vinyl pyrrolidone) hydrogels. Journal of Materials Research 28, 2401–2408 (2013). https://doi.org/10.1557/jmr.2013.134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.134

Navigation