Skip to main content
Log in

SiOC ceramics with ordered porosity by 3D-printing of a preceramic polymer

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ceramic parts possessing an ordered porosity were produced for the first time by powder-based three-dimensional printing of a preceramic polymer followed by pyrolysis in an inert atmosphere. The main parameters involved in the process were investigated, and the precision of the printed and ceramized parts was assessed by means of scanning electron microscopy and micro computed tomography. The influence of two different printing solvents was investigated and the use of a mixture of 1-hexanol and hexylacetate in particular allowed the production of parts with a relative density of 80% both in the polymeric and in the ceramic state. The mixing of a cross-linking catalyst directly with the printing liquid greatly simplified the process, minimizing the necessity of preprocessing the starting powder. Three-dimensional printing of a preceramic polymer not containing any inert or active fillers was proved to be a feasible, convenient and precise process for the production of porous ceramic possessing a complex, ordered structure, such as stretch-dominated lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
TABLE II.
TABLE III.
FIG. 2.
FIG. 3.
TABLE IV.
FIG. 4.

Similar content being viewed by others

References

  1. P. Colombo, G. Mera, R. Riedel, and G.D. Sorarù: Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93(7), 1805 (2010).

    CAS  Google Scholar 

  2. P. Colombo, G.D. Sorarù, R. Riedel, and A. Kleebe: Polymer Derived Ceramics. From Nano-structure to Applications (DESTech Publications, Lancaster, PA, 2009). pp. 476.

    Google Scholar 

  3. ASTM F2792-09e1: Standard Terminology for Additive Manufacturing Technologies (ASTM International, 2010).

    Google Scholar 

  4. T. Friedel, N. Travitzky, F. Niebling, M. Scheffler, and P. Greil: Fabrication of polymer derived ceramic parts by selective laser curing. J. Eur. Ceram. Soc. 25, 193 (2005).

    Article  CAS  Google Scholar 

  5. M. Mott and J.R.G. Evans: Solid freeforming of silicon carbide by inkjet printing using a polymeric precursor. J. Am. Ceram. Soc. 84(2), 307 (2001).

    Article  CAS  Google Scholar 

  6. M. Scheffler, R. Bordia, N. Travitzky, and P. Greil: Development of a rapid crosslinking preceramic polymer system. J. Eur. Ceram. Soc. 25, 175 (2005).

    Article  CAS  Google Scholar 

  7. H. Sieber, H. Friedrich, Z. Zeschky, and P. Greil: Light-weight ceramic composites from laminated paper structures. Ceram. Eng. Sci. Proc. 21, 129 (2000).

    Article  CAS  Google Scholar 

  8. N. Travitzky, H. Windsheimer, T. Fey, and P. Greil: Preceramic paper-derived ceramics. J. Am. Ceram. Soc. 91(11), 3477 (2008).

    Article  CAS  Google Scholar 

  9. P. Cromme, M. Scheffler, and P. Greil: Ceramic tapes from preceramic polymers. Adv. Eng. Mater. 4, 873 (2002).

    Article  CAS  Google Scholar 

  10. M.L. Branham, R. Tran-Son-Tay, C. Schoonover, P.S. Davis, S.D. Allen, and W. Shyy: Rapid prototyping of micropatterned substrates using conventional laser printers. J. Mater. Res. 17(7), 1559 (2002).

    Article  CAS  Google Scholar 

  11. H. Seyednejad, D. Gawlitta, R. Kuiper, A. de Bruin, C. van Nostrum, T. Vermonden, J.A. Wouter, and W.E. Hennink: In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(epsilon-caprolactone). Biomaterials 33(17), 4309 (2012).

    Article  CAS  Google Scholar 

  12. C.B. Williams, J.K. Cochran, and D.W. Rosen: Additive manufacturing of metallic cellular materials via three-dimensional printing. Int. J. Adv. Manuf. Technol. 53, 231 (2011).

    Article  Google Scholar 

  13. B. Verlee, T. Dormal, and J. Lecomte-Beckers: Density and porosity control of sintered 316L stainless steel parts produced by additive manufacturing. Powder Metall. 55(4), 260 (2012).

    Article  CAS  Google Scholar 

  14. A. Zocca, C.M. Gomes, E. Bernardo, R. Müller, J. Günster, and P. Colombo: LAS glass–ceramic scaffolds by three-dimensional printing. J. Eur. Ceram. Soc. 33, 1525 (2013).

    Article  CAS  Google Scholar 

  15. R. Gildenhaar, C. Knabe, C.M. Gomes, U. Linow, A. Houshmand, and G. Berger: Calcium alkaline phosphate scaffolds for bone regeneration 3D fabricated by additive manufacturing. Key Eng. Mater. 432(4), 849 (2012).

    Google Scholar 

  16. U. Gbureck, T. Hölzel, U. Klammert, K. Würzel, F.A. Mueller, and J.E. Barralet: Resorbable dicalcium phosphate bone substitutes prepared by 3d powder printing. Adv. Funct. Mater. 17, 3940 (2007).

    Article  CAS  Google Scholar 

  17. R.R. Melcher: Rapid prototyping from ceramics by 3D printing. Ph.D. Thesis, Friedrich-Alexander-Universitaet Erlangen/Nuernberg, 2009. [in German].

    Google Scholar 

  18. C.J. Maxwell: On the calculation of the equilibrium and stiffness of frames. Phil. Mag. 27, 294 (1864).

    Article  Google Scholar 

  19. M.F. Ashby: The properties of foams and lattices. Philos. Trans. R. Soc. London, Ser. A 364, 15 (2006).

    CAS  Google Scholar 

  20. R. Harsche, C. Balan, and R. Riedel: Amorphous Si(Al)OC ceramic from polysiloxanes: Bulk ceramic processing, crystallization behavior and applications. J. Eur. Ceram. Soc. 24, 3471 (2004).

    Article  Google Scholar 

  21. H. Hausner: Powder characteristics and their effect on powder processing. Powder Technol. 30(1), 3 (1981).

    Article  CAS  Google Scholar 

  22. E. Ionescu, C. Linck, C. Fasel, M. Müller, H.J. Kleebe, and R. Riedel. Polymer-derived SiOC/ZrO2 ceramic nanocomposites with excellent high-temperature stability. J. Am. Ceram. Soc. 93 (1), 241 (2010).

    Article  CAS  Google Scholar 

  23. H.D. Akkaş and M.L. Öveçoğlu. Silicon oxycarbide-based composites produced from pyrolysis of polysiloxanes with active Ti filler. J. Eur. Ceram. Soc. 15(26), 3441 (2006).

    Article  Google Scholar 

  24. B.M. Wu and M.J. Cima: Effects of solvent-particle interaction kinetics on microstructure formation during three-dimensional printing. Poly. Eng. Sci. 39(2), (1999).

    Google Scholar 

  25. P. Colombo, E. Bernardo, and G. Parcianello: Multifunctional advanced ceramics from preceramic polymers and nano-sized active fillers. J. Eur. Ceram. 33, 453 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Zocca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zocca, A., Gomes, C.M., Staude, A. et al. SiOC ceramics with ordered porosity by 3D-printing of a preceramic polymer. Journal of Materials Research 28, 2243–2252 (2013). https://doi.org/10.1557/jmr.2013.129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.129

Navigation