Skip to main content
Log in

Controlled synthesis of ytterbium ion and erbium ion codoped gadolinium oxyfluoride hollow nanosphere with upconversion luminescence property

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Uniform ytterbium ion and erbium ion codoped gadolinium oxyfluoride (GdOF: Yb3+, Er3+) hollow nanospheres of 100-nm diameter were synthesized via the nanoscale Kirkendall approach, using colloidal nanospheres of ytterbium ion and erbium ion codoped gadolinium hydroxide [Gd(OH)3: Yb3+, Er3+] as sacrificial templates and titanium tetrafluoride as fluorine source under hydrothermal condition. The shell thickness of the as-synthesized GdOF: Yb3+, Er3+ hollow nanospheres can be facilely tuned from 31 to 13 nm by controlling reaction temperature and reaction time. The upconversion emission color could be adjusted from red to yellow to green when the host lattices variedfrom gadolinium (III) oxide to gadolinium oxyfluoride to gadolinium fluoride. Furthermore, the formation mechanism of the hollow GdOF: Yb3+, Er3+ nanospheres was found to depend on the fluorine source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Hu, T.W. Odom, and C.M. Lieber: Chemistry and physics in one-dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435 (1999).

    Article  CAS  Google Scholar 

  2. J. Goldberger, R. He, S. Lee, Y. Zhang, H. Yan, H. Choi, and P. Yang: Single crystal gallium nitride nanotubes. Nature 422, 599 (2003).

    Article  CAS  Google Scholar 

  3. J.T. Zhang, Y. Tang, K. Lee, and M. Ouyang: Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 327, 1634 (2010).

    Article  CAS  Google Scholar 

  4. Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, and A.P. Alivisatos: Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711 (2004).

    Article  CAS  Google Scholar 

  5. J. Park, K. An, Y. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, and T. Hyeon: Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891 (2004).

    Article  CAS  Google Scholar 

  6. M. Yin, Y. Gu, I.L. Kuskovsky, T. Andelman, Y. Zhu, G.F. Neumark, and S.J. O’Brien: Zinc oxide quantum rods. J. Am. Chem. Soc. 126, 6206 (2004).

    Article  CAS  Google Scholar 

  7. F. Shi, M.K. Tse, M.M. Pohl, A. Brückner, M. Zhang, and M. Beller: Tuning catalytic activity between homogeneous and heterogeneous catalysis: Improved activity and selectivity of free nano-Fe2O3 in selective oxidations. Angew. Chem. Int. Ed. 46, 8866 (2007).

    Article  CAS  Google Scholar 

  8. Z.X. Li, L.L. Li, H.P. Zhou, Q. Yuan, C. Chen, L.D. Sun, and C.H. Yan: Colour modification action of an upconversion photonic crystal. Chem. Commun. 43, 6616 (2009).

    Article  CAS  Google Scholar 

  9. X.M. Lu, H.Y. Tuan, J.Y. Chen, Z.Y. Li, B.A. Korgel, and Y.N. Xia: Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium. J. Am. Chem. Soc. 129, 1733 (2007).

    Article  CAS  Google Scholar 

  10. B. Liu and H.C. Zeng: Fabrication of ZnO “Dandelions” via a modified Kirkendall process. J. Am. Chem. Soc. 126, 16744 (2004).

    Article  CAS  Google Scholar 

  11. C.J. Jia, L.D. Sun, Z.G. Yan, L.P. You, F. Luo, X.D. Han, Y.C. Pang, Z. Zhang, and C.H. Yan: Single-crystalline iron oxide nanotubes. Angew. Chem. Int. Ed. 44, 4328 (2005).

    Article  CAS  Google Scholar 

  12. X. Wang, J. Zhuang, Q. Peng, and Y.D. Li: A general strategy for nanocrystal synthesis. Nature 437, 121 (2005).

    Article  CAS  Google Scholar 

  13. X.H. Li, D.H. Zhang, and J.S. Chen: Synthesis of amphiphilic superparamagnetic ferrite/block copolymer hollow submicrospheres. J. Am. Chem. Soc. 128, 8382 (2006).

    Article  CAS  Google Scholar 

  14. G.F. Wang, Q. Peng, and Y.D. Li: Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 131, 14200 (2009).

    Article  CAS  Google Scholar 

  15. L.H. Hu, Q. Peng, and Y.D. Li: Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 130, 16136 (2008).

    Article  CAS  Google Scholar 

  16. K.L. Ai, B.H. Zhang, and L.H. Lu: Europium-based fluorescence nanoparticle sensor for rapid and ultrasensitive detection of an anthrax biomarker. Angew. Chem. Int. Ed. 48, 304 (2009).

    Article  CAS  Google Scholar 

  17. H. Zeng and S.H. Sun: Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles. Adv. Funct. Mater. 18, 391 (2008).

    Article  CAS  Google Scholar 

  18. C.X. Li, Z.Y. Hou, C.M. Zhang, P.P. Yang, G.G. Li, Z.H. Xu, Y. Fan, and J. Lin: Controlled synthesis of Ln3+ (Ln = Tb, Eu, Dy) and V5+ ion-doped YPO4 nano-/microstructures with tunable luminescent colors. Chem. Mater. 21, 4598 (2009).

    Article  CAS  Google Scholar 

  19. G. Jia, H.P. You, M. Yang, L.H. Zhang, and H.J. Zhang: Uniform lanthanide orthoborates LnBO3 (Ln = Gd, Nd, Sm, Eu, Tb, and Dy) microplates: General synthesis and luminescence properties. J. Phys. Chem. C 113, 16638 (2009).

    Article  CAS  Google Scholar 

  20. M. Yada, M. Mihara, S. Mouri, M. Kuroki, and T. Kijima: Rare earth (Er, Tm, Yb, Lu) oxide nanotubes templated by dodecylsulfate assemblies. Adv. Mater. 14, 309 (2002).

    Article  CAS  Google Scholar 

  21. F. Cao, W.D. Shi, L.J. Zhao, S.Y. Song, J.H. Yang, Y.Q. Lei, and H.J. Zhang: Hydrothermal synthesis and high photocatalytic activity of 3D wurtzite ZnSe hierarchical nanostruetures. J. Phys. Chem. C 112, 17095 (2008).

    Article  CAS  Google Scholar 

  22. K. Binnemans: Lanthanide-based luminescent hybrid materials. Chem. Rev. 109, 4283 (2009).

    Article  CAS  Google Scholar 

  23. T. Nakashima and N. Kimizuka: Interfacial synthesis of hollow TiO2 microspheres in ionic liquids. J. Am. Chem. Soc. 125, 6386 (2003).

    Article  CAS  Google Scholar 

  24. Q. Peng, Y. Dong, and Y.D. Li: ZnSe semiconductor hollow microspheres. Angew. Chem. Int. Ed. 42, 3027 (2003).

    Article  CAS  Google Scholar 

  25. H.G. Yang and H.C. Zeng: Creation of intestine-like interior space for metal-oxide nanostructures with a quasi-reverse emulsion. Angew. Chem. Int. Ed. 43, 5206 (2004).

    Article  CAS  Google Scholar 

  26. S.W. Kim, M. Kim, W.Y. Lee, and T. Hyeon: Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. J. Am. Chem. Soc. 124, 7642 (2002).

    Article  CAS  Google Scholar 

  27. X.M. Sun and Y.D. Li: Ga2O3 and GaN semiconductor hollow spheres. Angew. Chem. Int. Ed. 43, 3827 (2004).

    Article  CAS  Google Scholar 

  28. Y. Sun and Y. Xia: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002).

    Article  CAS  Google Scholar 

  29. S. Ikeda, S. Ishino, T. Harada, N. Okamoto, T. Sakata, H. Mori, S. Kuwabata, T. Torimoto, and M. Matsumura: Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst. Angew. Chem. Int. Ed. 45, 7063 (2006).

    Article  CAS  Google Scholar 

  30. X.L. Xu and S.A. Asher: Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals. J. Am. Chem. Soc. 126, 7940 (2004).

    Article  CAS  Google Scholar 

  31. X.W. Lou, Y. Wong, C. Yuan, J.Y. Lee, and L.A. Archer: Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325 (2006).

    Article  CAS  Google Scholar 

  32. W.F. Dong, A. Kishimura, Y. Anraku, and K. Kataoka: Monodispersed polymeric nanocapsules: Spontaneous evolution and morphology transition from reducible hetero-PEG PICmicelles by controlled degradation. J. Am. Chem. Soc. 131, 3804 (2009).

    Article  CAS  Google Scholar 

  33. D.H. Son, S. Hughes, Y.D. Yin, and A.P. Alivisatos: Cation exchange reactions in ionic nanocrystals. Science 306, 1009 (2004).

    Article  CAS  Google Scholar 

  34. C.C. Huang, T.Y. Liu, C.H. Su, Y.W. Lo, J.R. Chen, and C.S. Yeh: Superparamagnetic hollow and paramagnetic porous Gd2O3 particles. Chem. Mater. 20, 3840 (2008).

    Article  CAS  Google Scholar 

  35. C.M. Zhang, C.X. Li, C. Peng, R.T. Chai, S.S. Huang, D.M. Yang, Z.Y. Cheng, and J. Lin: Facile and controllable synthesis of monodisperse CaF2 and CaF2:Ce3+/Tb3+ hollow spheres as efficient luminescent materials and smart drug carriers. Chem. Eur. J. 16, 5672 (2010).

    Article  CAS  Google Scholar 

  36. K.A. Abel, J.C. Boyer, and F.C.J.M. Van Veggel: Hard proof of the NaYF4/NaGdF4 nanocrystal core/shell structure. J. Am. Chem. Soc. 131, 14644 (2009).

    Article  CAS  Google Scholar 

  37. H. Schafer, P. Ptacek, H. Eickmeier, and M. Haase: Synthesis of hexagonal Yb3+, Er3+-doped NaYF4 nanocrystals at low temperature. Adv. Funct. Mater. 19, 3091 (2009).

    Article  CAS  Google Scholar 

  38. Y.P. Li, J.H. Zhang, X. Zhang, Y.S. Luo, X.G. Ren, H.F. Zhao, X.J. Wang, L.D. Sun, and C.H. Yan: Near-infrared to visible upconversion in Er3+ and Yb3+ codoped Lu2O3 nanocrystals: Enhanced red color upconversion and three-photon process in green color upconversion. J. Phys. Chem. C 113, 4413 (2009).

    Article  CAS  Google Scholar 

  39. F. Zhang and D.Y. Zhao: Synthesis of uniform rare earth fluoride (NaMF4) nanotubes by in situ ion exchange from their hydroxide [M(OH)3] parents. ACS Nano 3, 159 (2009).

    Article  CAS  Google Scholar 

  40. Y.P. Li, J.H. Zhang, X. Zhang, Y.S. Luo, S.Z. Lu, Z.D. Hao, and X.J. Wang: Spectral probing of surface luminescence of cubic Lu2O3:Eu3+ nanocrystals synthesized by hydrothermal approach. J. Phys. Chem. C 113, 17705 (2009).

    Article  CAS  Google Scholar 

  41. Y.P. Du, Y.W. Zhang, Z.G. Yan, L.D. Sun, and C.H. Yan: Highly luminescent self-organized sub-2-nm EuOF nanowires. J. Am. Chem. Soc. 131, 16364 (2009).

    Article  CAS  Google Scholar 

  42. S. Fujihara, S. Koji, and T. Kimura: Structure and optical properties of (Gd, Eu)F3-nanocrystallized sol–gel silica films. J. Mater. Chem. 14, 1331 (2004).

    Article  CAS  Google Scholar 

  43. S. Fujihara and K. Tokumo: Chemical processing for inorganic fluoride and oxyfluoride materials having optical functions. J. Fluorine Chem. 130, 1106 (2009).

    Article  CAS  Google Scholar 

  44. E. Antic-Fidancev, J. Holsa, J.C. Krupa, and M. Lastusarri: Crystal fields in ROF: Tb3+ (R = La, Gd). J. Alloys Compd. 380, 303 (2004).

    Article  CAS  Google Scholar 

  45. F. Zhang, Y.F. Shi, X.H. Sun, D.Y. Zhao, and G.D. Stucky: Formation of hollow upconversion rare-earth fluoride nanospheres: Nanoscale Kirkendall effect during ion exchange. Chem. Mater. 21, 5237 (2009).

    Article  CAS  Google Scholar 

  46. Q. Wu, Y. Chen, P. Xiao, F. Zhang, X.Z. Wang, and Z. Hu: Hydrothermal synthesis of cerium fluoride hollow nanostructures in a controlled growth microenvironment. J. Phys. Chem. C 112, 9604 (2008).

    Article  CAS  Google Scholar 

  47. Z.J. Yang, D.Q. Han, D.L. Ma, H. Liang, L. Liu, and Y.Z. Yang: Fabrication of monodisperse CeO2 hollow spheres assembled by nano-octahedra. Cryst. Growth Des. 10, 291 (2010).

    Article  CAS  Google Scholar 

  48. G. Jia, H.P. You, K. Liu, Y.H. Zheng, N. Guo, and H.J. Zhang: Highly uniform Gd2O3 hollow microspheres: Template-directed synthesis and luminescence properties. Langmuir 26, 5122 (2010).

    Article  CAS  Google Scholar 

  49. L.H. Zhang, G. Jia, H.P. You, K. Liu, M. Yang, Y.H. Song, Y.H. Zheng, Y.H. Huang, N. Guo, and H.J. Zhang: Sacrificial template method for fabrication of submicrometer-sized YPO4:Eu3+ hierarchical hollow spheres. Inorg. Chem. 49, 3305 (2010).

    Article  CAS  Google Scholar 

  50. F. Wang and X.G. Liu: Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130, 5642 (2008).

    Article  CAS  Google Scholar 

  51. F. Caruso, R.A. Caruso, and H. Mohwald: Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111 (1998).

    Article  CAS  Google Scholar 

  52. W.F. Dong, J.K. Ferri, T. Adalseinsson, M. Schonhoff, G.B. Sukhorukov, and H. Mohwald: Influence of shell structure on stability, integrity, and mesh size of polyelectrolyte capsules: Mechanism and strategy for improved preparation. Chem. Mater. 17, 2603 (2005).

    Article  CAS  Google Scholar 

  53. Y.S. Li, J.L. Shi, Z.L. Hua, H.R. Chen, M.L. Ruan, and D.S. Yan: Hollow spheres of mesoporous alumisilicates with a three dimensional pore network and extraordinary hydrothermal stability. Nano Lett. 3, 609 (2003).

    Article  CAS  Google Scholar 

  54. T. He, D.R. Chen, X.L. Jiao, Y.Y. Xu, and Y.X. Gu: Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size. Langmuir 20, 8404 (2004).

    Article  CAS  Google Scholar 

  55. C.Z. Wu, Y. Xie, L.Y. Lei, S.Q. Hu, and C.Z. OuYang: Synthesis of new-phased VOOH hollow “dandelions” and their application in lithium-ion batteries. Adv. Mater.. 18, 1727 (2006).

    Article  CAS  Google Scholar 

  56. R.L. Penn and J.F. Banfield: Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2. Am. Mineral. 83, 1077 (1998).

    Article  CAS  Google Scholar 

  57. R.L. Penn and J.F. Banfield: Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 281, 969 (1998).

    Article  CAS  Google Scholar 

  58. R.L. Penn: Kinetics of oriented aggregation. J. Phys. Chem. B 108, 12707 (2004).

    Article  CAS  Google Scholar 

  59. B. Liu and H.C. Zeng: Mesoscale organization of CuO nanoribbons: Formation of “dandelions”. J. Am. Chem. Soc. 126, 8124 (2004).

    Article  CAS  Google Scholar 

  60. W. Ostwald: On the assumed isomerism of red and yellow mercury oxide and the surface tension of solid bodies. Z. Phys. Chem. Stoechiom. Verwandtschafts. 34, 495 (1900).

    Google Scholar 

  61. Y. Chang, J.J. Teo, and H.C. Zeng: Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 21, 1074 (2005).

    Article  CAS  Google Scholar 

  62. H.Y. Yu, J.G. Yu, S.W. Liu, and S. Mann: Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres. Chem. Mater. 19, 4327 (2007).

    Article  CAS  Google Scholar 

  63. E. Kirkendall, L. Thomassen, and C. Upthegrove: Rates of diffusion of copper and zinc in alpha brass. Trans. AIME 133, 186 (1939).

    Google Scholar 

  64. E.O. Kirkendall: Diffusion of zinc in alpha brass. Trans. AIME 147, 104 (1942).

    Google Scholar 

  65. A.D. Smigelskas and E.O. Kirkendall: Zinc diffusion in alpha brass. Trans. AIME 171, 130 (1947).

    Google Scholar 

  66. R.K. Chiang and R.T. Chiang: Formation of hollow Ni2P nanoparticles based on the nanoscale Kirkendall effect. Inorg. Chem. 46, 369 (2007).

    Article  CAS  Google Scholar 

  67. Y. Wang, X. Bai, T. Liu, B. Dong, L. Xu, Q. Liu, and H.W. Song: Solvothermal synthesis and luminescence properties of monodisperse Gd2O3:Eu3+ and Gd2O3:Eu3+@SiO2 nanospheres. J. Solid State Chem. 183, 2779 (2010).

    Article  CAS  Google Scholar 

  68. M. Pang, Q. Wang, and H.C. Zeng: Self-generated etchant for synthetic sculpturing of Cu2O-Au, Cu2O@Au, Au/Cu2O, and 3D-Au nanostructures. Chem. Eur. J. 18, 14605 (2012).

    Article  CAS  Google Scholar 

  69. R.M. Petoral, F. Soderlind, A. Klasson, A. Suska, M.A. Fortin, N. Abrikossova, L. Selegard, P.O. Kall, M. Engstrom, and K. Uvdal: Synthesis and characterization of Tb3+-doped Gd2O3 nanocrystals: A bifunctional material with fluorescent labeling and MRI contrast agent properties. J. Phys. Chem. C 113, 6913 (2009).

    Article  CAS  Google Scholar 

  70. A.P. Milanov, T. Toader, H. Parala, D. Barreca, A. Gasparotto, C. Bock, H.W. Becker, D.K. Ngwashi, R. Cross, S. Paul, U. Kunze, R. Fishcher, and A. Devi: Lanthanide oxide thin films by metalorganic chemical vapor deposition employing volatile guanidinate precursors. Chem. Mater. 21, 5443 (2009).

    Article  CAS  Google Scholar 

  71. F. Vetrone, J.C. Boyer, A.A. Capobianco, A. Speghini, and M. Bettinelli: Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3: Er3+. Chem. Mater. 15, 2737 (2003).

    Article  CAS  Google Scholar 

  72. F. Pandozzi, F. Vetrone, J.C. Boyer, R. Naccache, J.A. Capobianco, A. Speghini, and M. Bettinelli: A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals. J. Phys. Chem. B 109, 17400 (2005).

    Article  CAS  Google Scholar 

  73. X. Bai, H.W. Song, G.H. Pan, Y.Q. Lei, T. Wang, X.G. Ren, S.Z. Lu, B. Dong, Q.L. Dai, and L.B. Fan: Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects. J. Phys. Chem. C 111, 13611 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the National Natural Science Foundation of China (Grant Nos. 20971051 and 10704073). We are very grateful to Prof. Jihong Yu for her helpful discussion and structural characterization. We are also grateful to Prof. Junqi Sun for his helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang.

Supplementary Material

Supplementary Material

Supplementary material can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Liu, T., Wang, X. et al. Controlled synthesis of ytterbium ion and erbium ion codoped gadolinium oxyfluoride hollow nanosphere with upconversion luminescence property. Journal of Materials Research 28, 848–855 (2013). https://doi.org/10.1557/jmr.2013.12

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.12

Navigation