Skip to main content
Log in

Size-dependent carrier dynamics and activation energy in CdTe/ZnTe quantum dots on Si substrates

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We investigate the size-dependent carrier dynamics and activation energy in cadmium telluride/zinc telluride (CdTe/ZnTe) quantum dots (QDs) grown on silicon (Si) substrates. Photoluminescence (PL) spectra show that the excitonic peak corresponding to transitions from the ground electronic subband to the ground heavy-hole band in CdTe/ZnTe QDs shifts to a lower energy level with increasing CdTe thickness, owing to an increase in the size of the CdTe QDs. Time-resolved PL measurements performed to study the carrier dynamics reveal a longer exciton lifetime for CdTe/ZnTe QDs with increasing CdTe thickness on account of the reduction of the exciton oscillator strength resulting from a strong built-in electric field in the larger QDs. The activation energy of the electrons confined in the CdTe/ZnTe QDs, as obtained from the temperature-dependent PL spectra, increases with increasing CdTe thickness. These results indicate that the carrier dynamics and activation energy of CdTe/ZnTe QDs are affected by the size of the CdTe QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.

Similar content being viewed by others

References

  1. F.H.L. Koppens, C. Buizert, K.J. Tielrooij, I.T. Vink, K.C. Nowack, T. Meunier, L.P. Kouwenhoven, and L.M.K. Vandersypen: Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766 (2006).

    Article  CAS  Google Scholar 

  2. A.H. Quarterman, K.G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S.P. Elsmere, I. Farrer, D.A. Ritchie, and A. Tropper: A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses. Nat. Photonics 3, 729 (2009).

    Article  CAS  Google Scholar 

  3. P.O. Anikeeva, J.E. Halpert, M.G. Bawendi, and V. Bulovic: Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 9, 2532 (2009).

    Article  CAS  Google Scholar 

  4. H. Lim, S. Tsao, W. Zhang, and M. Razeghi: High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature. Appl. Phys. Lett. 90, 131112 (2007).

    Article  Google Scholar 

  5. D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa: Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage. Appl. Phys. Lett. 96, 203507 (2010).

    Article  Google Scholar 

  6. W. Lei, C. Notthoff, M. Offer, C. Meier, A. Lorke, C. Jagadish, and A.D. Wieck: Electron energy structure of self-assembled In(Ga)As nanostructures probed by capacitance-voltage spectroscopy and one-dimensional numerical simulation. J. Mater. Res. 24, 2179 (2009).

    Article  CAS  Google Scholar 

  7. A. De and C.E. Pryor: Predicted band structures of III-V semiconductors in the wurtzite phase. Phys. Rev. B 81, 155210 (2010).

    Article  Google Scholar 

  8. H. Kirmse, R. Schneider, M. Rabe, W. Neumann, and F. Henneberger: Transmission electron microscopy investigation of structural properties of self-assembled CdSe/ZnSe quantum dots. Appl. Phys. Lett. 72, 1329 (1998).

    Article  CAS  Google Scholar 

  9. N. Pelekanos, J. Ding, A.V. Nurmikko, H. Luo, N. Samarth, and J.K. Furdyna: Quasi-two-dimensional excitons in (Zn, Cd)Se/ZnSe quantum wells: Reduced exciton-LO-phonon coupling due to confinement effects. Phys. Rev. B 45, 6037 (1992).

    Article  CAS  Google Scholar 

  10. A. El Moussaouy, D. Bria, A. Nougauoi, R. Charrour, and M. Bouhassoune: Exciton-phonon coupled states in CdTe/Cd1-xZnxTe quantum dots. J. Appl. Phys. 93, 2906 (2003).

    Article  Google Scholar 

  11. B. Patton, W. Langbein, U. Woggon, L. Maingault, and H. Mariette: Time- and spectrally-resolved four-wave mixing in single CdTe/ZnTe quantum dots. Phys. Rev. B 73, 235354 (2006).

    Article  Google Scholar 

  12. W.I. Han, J.H. Lee, J.S. Yu, J.C. Choi, and H.S. Lee: Carrier dynamics and activation energy of CdTe quantum dots in a CdxZn1-xTe quantum well. Appl. Phys. Lett. 99, 231908 (2011).

    Article  Google Scholar 

  13. Y.P. Chen, S. Sivananthan, and J.P. Faurie: Structure of CdTe(111)B grown by MBE on misoriented Si(001). J. Electron. Mater. 22, 951 (1993).

    Article  CAS  Google Scholar 

  14. D.J. Smith, S-C.Y. Tsen, Y.P. Chen, J-P. Faurie, and S. Sivananthan: Microstructure of heteroepitaxial CdTe grown on misoriented Si(001) substrates. Appl. Phys. Lett. 67, 1591 (1995).

    Article  CAS  Google Scholar 

  15. L. Marsal, L. Besombes, F. Tinjod, K. Kheng, A. Wasiela, B. Gilles, J-L. Rouvière, and H. Mariette: Zero-dimensional excitons in CdTe/ZnTe nanostructures. J. Appl. Phys. 91, 4936 (2002).

    Article  CAS  Google Scholar 

  16. H.S. Lee, S-Y. Yim, I.W. Lee, and T.W. Kim: Size-dependent carrier dynamics in self-assembled CdTe/ZnTe quantum dots. J. Lumin. 132, 1581 (2012).

    Article  CAS  Google Scholar 

  17. J.T. Woo, S.H. Song, I. Lee, T.W. Kim, K.H. Yoo, H.S. Lee, and H.L. Park: Strain distributions and electronic subband energies of self-assembled CdTe quantum wires grown on ZnTe buffer layers. J. Appl. Phys. 106, 113530 (2009).

    Article  Google Scholar 

  18. G. Karczewski, S. Maćkowski, M. Kutrowski, T. Wojtowicz, and J. Kossut: Photoluminescence study of CdTe/ZnTe self-assembled quantum dots. Appl. Phys. Lett. 74, 3011 (1998).

    Article  Google Scholar 

  19. R. Leon, Y. Kim, C. Jagadish, M. Gai, J. Zou, and D.J.H. Cockayne: Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots. Appl. Phys. Lett. 69, 1888 (1996).

    Article  CAS  Google Scholar 

  20. C. Couteau, S. Moehl, F. Tinjod, J.M. Gérard, K. Kheng, and H. Mariette: Correlated photon emission from a single II-VI quantum dot. Appl. Phys. Lett. 85, 6251 (2004).

    Article  CAS  Google Scholar 

  21. O. Labeau, P. Tamarat, and B. Lounis: Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys. Rev. Lett. 90, 257404 (2003).

    Article  Google Scholar 

  22. S. Kako, M. Miyamura, K. Tachibana, K. Hoshino, and Y. Arakawa: Size-dependent radiative decay time of excitons in GaN/AlN self-assembled quantum dots. Appl. Phys. Lett. 83, 984 (2003).

    Article  CAS  Google Scholar 

  23. M. Benyoucef, A. Rastelli, O.G. Schmidt, S.M. Ulrich, and P. Michler: Temperature dependent optical properties of single, hierarchically self-assembled GaAs/AlGaAs quantum dots. Nanoscale Res. Lett. 1, 172 (2006).

    Article  Google Scholar 

  24. E.W. Williams and H.B. Bebb: Semiconductors and Semimetals, Vol. 8, edited by R.K. Willardson and A.C. Beer (Academic Press, New York, 1992), p. 321.

    Article  Google Scholar 

  25. H.S. Lee, H.L. Park, and T.W. Kim: Dimensional structural transition in CdTe/CdxZn1-xTe nanostructures. Appl. Phys. Lett. 85, 5598 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No. 2010–0021189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Seok Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.H., Choi, J.C. & Lee, H.S. Size-dependent carrier dynamics and activation energy in CdTe/ZnTe quantum dots on Si substrates. Journal of Materials Research 28, 1466–1470 (2013). https://doi.org/10.1557/jmr.2013.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.112

Navigation