Skip to main content
Log in

Sulfonated poly(vinyl alcohol)/triazole blends as anhydrous proton conducting membranes for polymer electrolyte membrane fuel cells

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new type of cross-linked poly(vinyl alcohol) (PVA)-sulfosuccinic acid (SSA) polymers were synthesized by varying the amount of SSA and then blending with 3-amino-1,2,4-triazole (ATri) and 1H-1,2,4-triazole (Tri) at different stoichiometric ratios to obtain proton conductive membranes in anhydrous state. The proton conductivities of membranes were investigated as a function of azole composition, SSA composition, and operating temperature. The final structures of the copolymers were confirmed by Fourier transform infrared spectra. The resultant hybrid membranes are transparent, flexible, and showed good thermal stability up to approximately 200 °C. Differential scanning calorimetry results illustrated the homogeneity of the materials. The cross-linking of the structure was confirmed by the alteration of solubility of the membranes. Methanol permeability measurements showed that the composite membranes have lower methanol permeability compared to Nafion 112. The proton conductivity of the membranes continuously increased with increasing SO3H content and 3-amino-1,2,4-triazole (ATri) content. A maximum proton conductivity of 7.26 × 10−3 S/cm was achieved for ATri-3 at 140 °C under anhydrous conditions. Incorporation of ATri unit (according to Tri unit) significantly increased the proton conductivity of the membranes, probably due to the ion transport channel or network structures formed in the membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
TABLE II.

Similar content being viewed by others

References

  1. K.D. Kreuer: Proton conductivity: Materials and applications. Chem. Mater. 8, 610 (1996).

    Article  CAS  Google Scholar 

  2. H.T. Pu, W.H. Meyer, and G. Wegner: Proton conductivity in acid-blended poly(4-vinylimidazole). Macromol. Chem. Phys. 202, 1478 (2001).

    Article  CAS  Google Scholar 

  3. H. Zhang and P.K. Shen: Recent development of polymer electrolyte membranes for fuel cells. Chem. Rev. 112, 2780 (2012).

    Article  CAS  Google Scholar 

  4. H.T. Pu and S. Ye: Preparation and proton conductivity of acid-doped poly(5-vinyltetrazole-co-acrylonitrile). React. Funct. Polym. 66, 856 (2006).

    Article  CAS  Google Scholar 

  5. J. Maiti, N. Kakati, S.H. Lee, S.H. Jee, B. Viswanathan, and Y.S. Yoon: Where do poly(vinyl alcohol) based membranes stand in relation to Nafion for direct methanol fuel cell applications? J. Power Sources 216, 48 (2012).

    Article  CAS  Google Scholar 

  6. A. Bozkurt, M. Ise, K.D. Kreuer, W.H. Meyer, and G. Wegner: Proton conducting polymer electrolytes based on phosphoric acid. Solid State Ionics 125, 225 (1999).

    Article  CAS  Google Scholar 

  7. J.C. Lassegues, J. Grondin, M. Hernandez, and B. Maree: Proton conducting polymer blends and hybrid organic inorganic materials. Solid State Ionics 145, 37 (2001).

    Article  CAS  Google Scholar 

  8. K.D. Kreuer, A. Fuchs, M. Ise, M. Spaeth, and J. Maier: Imidazole and pyrazole-based proton conducting polymers and liquids. Electrochim. Acta 43, 1281 (1998).

    Article  CAS  Google Scholar 

  9. S. Bose, T. Kuila, T.X.H. Nguyen, N.H. Kim, K. Lau, and J.H. Lee: Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Prog. Polym. Sci. 36, 813 (2011).

    Article  CAS  Google Scholar 

  10. R. Tanaka, H. Yamamoto, S. Kawamura, and T. Iwase: Proton conducting behavior of poly(ethylenimine)-H3PO4 systems. Electrochim. Acta 40, 2421 (1995).

    Article  CAS  Google Scholar 

  11. P. Donoso, W. Gorecki, C. Berthier, F. Defendini, C. Poinsignon, and M.B. Armand: NMR, conductivity and neutron scattering investigation of ionic dynamics in the anhydrous polymer protonic conductor PEO(H3PO4)x). Solid State Ionics 28, 969 (1988).

    Article  Google Scholar 

  12. S. Petty-Week, J.J. Zupancic, and J.R. Swedo: Proton conducting interpenetrating polymer networks. Solid State Ionics 31, 117 (1988).

    Article  Google Scholar 

  13. A. Bozkurt and W.H. Meyer: Proton conducting poly(4-vinylimidazol)-acid blends. Solid State Ionics 138, 259 (2001).

    Article  CAS  Google Scholar 

  14. C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, and A.B. Bocarsly: Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. J. Power Sources 103, 1 (2001).

    Article  CAS  Google Scholar 

  15. F. Sevil and A. Bozkurt: Proton conducting polymer electrolytes on the basis of poly(vinylphosphonic acid) and imidazole. J. Phys. Chem. Solids 65, 1659 (2004).

    Article  CAS  Google Scholar 

  16. M. Yamada and I. Honma: Proton conducting acid–base mixed materials under water-free condition. Electrochim. Acta 48, 2411 (2003).

    Article  CAS  Google Scholar 

  17. S.T. Gunday, A. Bozkurt, W.H. Meyer, and G. Wegner: Effects of different acid functional groups on proton conductivity of polymer-1,2,4-triazole blends. J. Polym. Sci., Part B: Polym. Phys. 44, 3315 (2006).

    Article  CAS  Google Scholar 

  18. M.F.H. Schuster, W.H. Meyer, M. Schuster, and K.D. Kreuer: Toward a new type of anhydrous organic proton conductor based on immobilized imidazole. Chem. Mater. 16, 329 (2004).

    Article  CAS  Google Scholar 

  19. A. Bozkurt, W.H. Meyer, and G. Wegner: PAA/imidazole based proton conducting polymer electrolytes. J. Power Sources 123, 126 (2003).

    Article  CAS  Google Scholar 

  20. W. Deng, V. Molinero, and W.A. Goddard: Fluorinated imidazoles as proton carriers for water-free fuel cell membranes. J. Am. Chem. Soc. 126, 15644 (2004).

    Article  CAS  Google Scholar 

  21. S. Li, Z. Zhou, Y. Zhang, and M. Liu: 1H-1,2,4-Triazole: An effective solvent for proton-conducting electrolytes. Chem. Mater. 17, 5884 (2005).

    Article  CAS  Google Scholar 

  22. S.U. Celik, U. Akbey, A. Bozkurt, R. Graf, and H.W. Spiess: Proton-conducting properties of acid-doped poly(glycidyl methacrylate)-1,2,4-triazole systems. Macromol. Chem. Phys. 209, 593 (2008).

    Article  CAS  Google Scholar 

  23. S. Martwiset, R.C. Woudenberg, S. Granados-Focil, O. Yavuzcetin, M.T. Tuominen, and E.B. Coughlin: Intrinsically conducting polymers and copolymers containing triazole moieties. Solid State Ionics 178, 1398 (2007).

    Article  CAS  Google Scholar 

  24. J.W. Rhim, H.B. Park, C.S. Lee, J.H. Jun, D.S. Kim, and Y.M. Lee: Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: Proton and methanol transport through membranes. J. Membr. Sci. 238, 143 (2004).

    Article  CAS  Google Scholar 

  25. C. Chanthad and J. Wootthikanokkhan: Effects of crosslinking time and amount of sulfophthalic acid on properties of the sulfonated poly(vinyl alcohol) membrane. J. Appl. Polym. Sci. 101, 1931 (2006).

    Article  CAS  Google Scholar 

  26. N. Seeponkai and J. Wootthikanokkhan: Proton conductivity and methanol permeability of sulfonated poly(vinyl alcohol) membranes modified by using sulfoacetic acid and poly(acrylic acid). J. Appl. Polym. Sci. 105, 838 (2007).

    Article  CAS  Google Scholar 

  27. A.S. Hickey and N.A. Peppas: Mesh size and diffusive characteristics of semicrystalline poly(vinyl alcohol) membranes prepared by freezing/thawing techniques. J. Membr. Sci. 107, 229 (1995).

    Article  CAS  Google Scholar 

  28. A.X. Yu and S. Cao Wang: Water-vapor permeability of polyvinyl alcohol films. Desalination 62, 293 (1987).

    Article  CAS  Google Scholar 

  29. B. Bolto, T. Tran, M. Hoang, and Z. Xie: Crosslinked poly(vinyl alcohol) membranes. Prog. Polym. Sci. 34, 969 (2009).

    Article  CAS  Google Scholar 

  30. U. Sen, S.U. Celik, A. Ata, and A. Bozkurt: Anhydrous proton conducting membranes for PEM fuel cells based on nafion/azole composites. Int. J. Hydrogen Energy 33, 2808 (2008).

    Article  CAS  Google Scholar 

  31. H.S. Mansur, R.L. Oréfice, and A.A.P. Mansur, Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle x-ray scattering and FTIR spectroscopy. Polymer 45, 7193 (2004).

    Article  CAS  Google Scholar 

  32. C.E. Wilkes, J.W. Summers, C.A. Daniels, and M.T. Berard: PVC Handbook (Hanser, Munich, 2005).

    Google Scholar 

  33. J.V. Gasa, R.A. Weiss, and M.T. Shaw: Ionic crosslinking of ionomer polymer electrolyte membranes using barium cations. J. Membr. Sci. 304, 173 (2007).

    Article  CAS  Google Scholar 

  34. L. Lebrun, E. Da Silva, and M. Metayer: Elaboration of ion-exchange membrane with semi-interpenetrating polymer networks containing poly(vinyl alcohol) as polymer matrix. J. Appl. Polym. Sci. 84, 1572 (2002).

    Article  CAS  Google Scholar 

  35. H.Q. Zhang, X.F. Li, C.J. Zhao, T.Z. Fu, Y.H. Shi, and H. Na: Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance. J. Membr. Sci. 308, 66 (2008).

    Article  CAS  Google Scholar 

  36. T. Dippel, K.D. Kreuer, J.C. Lassegues, and D. Rodriguez: Proton conductivity in fused phosphoric acid; A 1H/31P PFG-NMR and QNS study. Solid State Ionics 61, 41 (1993).

    Article  CAS  Google Scholar 

  37. S.Ü. Celik, A. Bozkurt, and S.S. Hosseini: Alternatives toward proton conductive anhydrous membranes for fuel cells: Heterocyclic protogenic solvents comprising polymer electrolytes. Prog. Polym. Sci. 37, 1265 (2012).

    Article  CAS  Google Scholar 

  38. F. Goktepe, U.C. Sevim, and A. Bozkurt: Preparation and the proton conductivity of chitosan/poly(vinyl phosphonic acid) complex polymer electrolytes. J. Non-Cryst. Solids 354, 3637 (2008).

    Article  CAS  Google Scholar 

  39. F. Goktepe, A. Bozkurt, and S.T. Gunday: Synthesis and proton conductivity of poly(styrene sulfonic acid)/heterocycle-based membranes. Polym. Int. 57, 133 (2008).

    Article  CAS  Google Scholar 

  40. A. Pangon, K. Tashiro, and S. Chirachanchai: Polyethylenimine containing benzimidazole branching: A model system providing a balance of hydrogen bond network or chain mobility enhances proton conductivity. J. Phys. Chem. B 115, 11359 (2011).

    Article  CAS  Google Scholar 

  41. B.B.R. Silva, J.B. Soares, C.F. Malfatti, and M.M.C. Forte: Benzimidazole effect on the performance of polyelectrolyte membranes based on sulfonated hydrocarbon resin. J. Membr. Sci. 374, 12 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehtap Safak Boroglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boroglu, M.S., Celik, S.U., Boz, I. et al. Sulfonated poly(vinyl alcohol)/triazole blends as anhydrous proton conducting membranes for polymer electrolyte membrane fuel cells. Journal of Materials Research 28, 1458–1465 (2013). https://doi.org/10.1557/jmr.2013.111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.111

Navigation