Skip to main content
Log in

Intense optical absorption of defects created in Er3+-diffused layer in MgO (5 mol%)-doped LiNbO3 crystal by local Er3+ diffusion under Li-poor atmosphere

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Intense broad absorption bands centered around 1.7, 2.5, 3.1, and 3.7 eV take place in Er3+-diffused layer formed near MgO (5 mol%)-doped LiNbO3 crystal surface by in-diffusion of Er metal under Li-poor atmosphere. These bands are tentatively attributed to the defect absorption of small polarons, bipolarons, F-centers, and Q-polarons created due to Er3+ in-diffusion and Li2O loss from the crystal. It is interesting that the number, type, area, and peaking position of the bands can be controlled by the diffusion temperature and further oxidation treatment. Such material is a promising medium for data storage based upon two-color holography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE 1.
FIG. 1.
FIG. 2.
FIG. 3.

Similar content being viewed by others

References

  1. R. Brinkmann, W. Sohler, and H. Suche: Continuous-wave Erbium-diffused LiNbO3 waveguide laser. Electron. Lett. 27, 415–417 (1991).

    Article  CAS  Google Scholar 

  2. Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore: Advanced Ti:Er:LiNbO3 waveguide lasers. IEEE J. Sel. Top. Quantum Electron. 6, 101–113 (2000).

    Article  CAS  Google Scholar 

  3. C.H. Huang and L. McCaughan: 980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: A comparison with 1484-nm pumping. IEEE J. Sel. Top. Quantum Electron. 2, 367–372 (1996).

    Article  CAS  Google Scholar 

  4. B.K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler: Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide. Opt. Lett. 29, 165–167 (2004).

    Article  CAS  Google Scholar 

  5. G. Schreiber, D. Hofmann, W. Grundkotter, Y.L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler: Nonlinear integrated optical frequency converters with periodically poled Ti: LiNbO3 waveguides. Proc. SPIE Int. Soc. Opt. Eng. 4277, 144–160 (2001).

    CAS  Google Scholar 

  6. L. Hesselink, S.S. Orlov, A. Liu, A. Akella, D. Lande, and R.R. Neurgaonkar: Photorefractive materials for nonvolatile volume holographic data storage. Science 282, 1089–1094 (1998).

    Article  CAS  Google Scholar 

  7. K. Buse, A. Adibi, and D. Psaltis: Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature 393, 665–668 (1998).

    Article  CAS  Google Scholar 

  8. K. Buse: Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods. Appl. Phys. B Lasers Opt. 64, 273–291 (1997).

    Article  CAS  Google Scholar 

  9. K. Buse: Light-induced charge transport processes in photorefractive crystals II: Materials. Appl. Phys. B Lasers Opt. 64, 391–401 (1997).

    Article  CAS  Google Scholar 

  10. Y. Tomita, M. Hoshi, and S. Sunarno: Nonvolatile two-color holographic recording in Er-doped LiNbO3. Jpn. J. Appl. Phys., Part 2 40, L1035–L1037 (2001).

    Article  CAS  Google Scholar 

  11. D.L. Zhang, R. Ma, and E.Y.B. Pun: Optical Absorption characteristics in thermally reduced Er: LiNbO3 crystals. Opt. Mater. 28, 453–460 (2006).

    Article  CAS  Google Scholar 

  12. D.L. Zhang, J. Zhang, Z.K. Wu, and E.Y.B. Pun: Light-induced absorption in strongly reduced congruent and nearly-stoichiometric Er: LiNbO3 crystals. Appl. Phys. A 83, 397–409 (2006).

    Article  CAS  Google Scholar 

  13. D.L. Zhang, P.R. Hua, X.X. Liu, and E.Y.B. Pun: Li-deficient, off-congruent MgO: LiNbO3 crystals prepared by post-grown Li-poor vapor transport equilibration for integrated optics. J. Am. Ceram. Soc. 93, 1991–1998 (2010).

    CAS  Google Scholar 

  14. L. Arizmendi, J.M. Cabrera, and F. Agullo-Lopez: Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction. J. Phys. C: Solid State Phys. 17, 515–529 (1984).

    Article  CAS  Google Scholar 

  15. I.S. Akhmadullin, V.A. Golenishchev-Kutuzov, and S.A. Migachev: Electronic structure of deep centers in LiNbO3. Phys. Solid State 40, 1012–1018 (1998).

    Article  Google Scholar 

  16. R. Bhatt, S. Ganesamoorthy, I. Bhaumik, A.K. Karnal, and P.K. Gupta: Optical bandgap and electrical conductivity studies on near stoichiometric LiNbO3 crystals prepared by VTE process. J. Phys. Chem. Solids 73, 257–261 (2012).

    Article  CAS  Google Scholar 

  17. O.F. Schirmer, O. Thiemann, and M. Wöhlecke: Defects in LiNbO3. I. Experimental aspects. J. Phys. Chem. Solids 52, 185–200 (1991).

    Article  CAS  Google Scholar 

  18. O.F. Schirmer and D. von der Linde: Two-photon- and X-ray-induced Nb4+ and O small polarons in LiNbO3. Appl. Phys. Lett. 33, 35–38 (1978).

    Article  CAS  Google Scholar 

  19. A. Garcia-Cabanes, J.A. Sanz-Garcia, J.M. Cabrera, F. Agullo-Lopez, C. Zaldo, R. Pareja, K. Polgar, K. Raksanyi, and I. Folvari: Influence of stoichiometry on defect-related phenomena in LiNbO3. Phys. Rev. B: Condens. Matter 37, 6085–6091 (1988).

    Article  CAS  Google Scholar 

  20. B. Faust, H. Muller, and O.F. Schirmer: Free small polarons in LiNbO3. Ferroelectrics 153, 297–302 (1994).

    Article  Google Scholar 

  21. L.E. Halliburton, K.L. Sweeney, and C.Y. Chen: Electron spin resonance and optical studies of point defects in lithium niobate. Nucl. Instrum. Methods Phys. Res., Sect. B 229, 344–347 (1984).

    Article  CAS  Google Scholar 

  22. J. Koppitz, O.F. Schirmer, and A.I. Kuznetsov: Thermal dissociation of bipolarons in reduced undoped LiNbO3. Europhys. Lett. 4, 1055–1059 (1987).

    Article  CAS  Google Scholar 

  23. K.L. Sweeney and L.E. Halliburton: Oxygen vacancies in lithium niobate. Appl. Phys. Lett. 43, 336–338 (1983).

    Article  CAS  Google Scholar 

  24. J.L. Ketchum, K.L. Sweeney, L.E. Halliburton, and A.F. Armington: Vacuum annealing effects in lithium niobate. Phys. Lett. A 94, 450–453 (1983).

    Article  Google Scholar 

  25. D.M. Smyth: Defects and transport in LiNbO3. Ferroelectrics 50, 93–102 (1983).

    Article  Google Scholar 

  26. G.G. Deleo, J.L. Dobson, M.F. Masters, and L.H. Bonjack: Electronic structure of an oxygen vacancy in lithium niobate. Phys. Rev. B: Condens. Matter 37, 8394–8400 (1988).

    Article  CAS  Google Scholar 

  27. H. Donnerberg, S.M. Tomlinson, C.R.A. Catlow, and O.F. Schirmer: Computer-simulation studies of intrinsic defects in LiNbO3 crystals. Phys. Rev. B: Condens. Matter 40, 11909–11916 (1989).

    Article  CAS  Google Scholar 

  28. U. Schlarb and K. Betzler: Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate. Phys. Rev. B: Condens. Matter 50, 751–757 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Project Nos. 50872089, 61077039, and 61107056, by the Key Program for Research on Fundamental to Application and Leading Technology, Tianjin Science and Technology Commission of China under Project No. 11JCZDJC15500, and by the Specialized Research Fund for the Doctoral Program of Higher Education of China under Project No. 20100032110052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Long Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, DL., Xu, SY., Han, F. et al. Intense optical absorption of defects created in Er3+-diffused layer in MgO (5 mol%)-doped LiNbO3 crystal by local Er3+ diffusion under Li-poor atmosphere. Journal of Materials Research 27, 1482–1487 (2012). https://doi.org/10.1557/jmr.2012.97

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.97

Navigation