Skip to main content
Log in

Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hydrothermal approach is widely used for the synthesis of zinc oxide (ZnO) nanowires. Zinc nitrate hexahydrate, zinc acetate and zinc chloride are three common salts that are used for synthesis. Among these, zinc nitrate hexahydrate is primarily used in many studies and zinc chloride is preferred for electrodeposition. In this work, zinc acetate dihydrate salt is used for the growth of ZnO nanowires and the effects of time, temperature, solution concentration and concentration ratios of the precursor chemicals are investigated. It is found that the growth time and solution concentration control the lengths of the nanowires, whereas the precursor concentration ratio and solution concentration control their diameter. High solution concentrations and high zinc acetate dihydrate concentrations lead to the development of thin film morphology. Optimum growth parameters are obtained and suggested for the use of zinc acetate dihydrate as a zinc source for growing ZnO nanowires with high aspect ratio (AR). The use of zinc acetate dihydrate leads to the formation of ZnO nanowires without impurities and eliminates the need for using extra capping agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).

    Article  CAS  Google Scholar 

  2. C. Li, Y. Zhang, M. Mann, P. Hiralal, H.E. Unalan, W. Lei, B.P. Wang, D.P. Chu, D. Piribat, G.A.J. Amaratunga, and W.I. Milne: Stable, self-ballasting field emission from zinc oxide nanowires grown on an array of vertically aligned carbon nanofibers. Appl. Phys. Lett. 96, 143114 (2010).

    Article  Google Scholar 

  3. Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang, and D.P. Yu: Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 83, 144 (2003).

    Article  CAS  Google Scholar 

  4. S. Santra, P.K. Guha, S.Z. Ali, P. Hiralal, H.E. Unalan, J.A. Covington, G.A.J. Amaratunga, W.I. Milne, J.W. Gardner, and F. Udrea: ZnO nanowires grown on SOI CMOS substrate for ethanol sensing. Sens. Actuators, B 146, 559 (2010).

    Article  CAS  Google Scholar 

  5. X. Wang, C.J. Summers, and Z.L. Wang: Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 4, 423 (2004).

    Article  CAS  Google Scholar 

  6. F.M. Li, G-W. Hsieh, S. Dalal, M.C. Newton, J.E. Scott, P. Hiralal, A. Nathan, P.A. Warburton, H.E. Unalan, P. Beecher, A.J. Flewitt, I. Robinson, G.A.J. Amaratunga, and W.I. Milne: Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistors. IEEE Trans. Electron Devices 55, 3001 (2008).

    Article  CAS  Google Scholar 

  7. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 (2005).

    CAS  Google Scholar 

  8. H.E. Unalan, D. Wei, K. Suzuki, S. Dalal, P. Hiralal, H. Matsumoto, S. Imaizumi, M. Minagawa, A. Tanioka, A.J. Flewitt, W.I. Milne, and G.A.J. Amaratunga: Photoelectrochemical cell using dye sensitized zinc oxide nanowires grown on carbon fibers. Appl. Phys. Lett. 93, 133116 (2008).

    Article  Google Scholar 

  9. H.E. Unalan, P. Hiralal, D. Kuo, B. Parekh, G.A.J. Amaratunga, and M. Chhowalla: Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films. J. Mater. Chem. 18, 5909 (2008).

    Article  CAS  Google Scholar 

  10. Z.L. Wang and J. Song: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242 (2006).

    Article  CAS  Google Scholar 

  11. M-P. Lu, J. Song, M-Y. Lu, M-T. Chen, Y. Gao, L-J. Chen, and Z.L. Wang: Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 9, 1223 (2009).

    Article  CAS  Google Scholar 

  12. M-C. Jeong, B-Y. Oh, M-H. Ham, and J-M. Myoung: Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes. Appl. Phys. Lett. 88, 202105 (2006).

    Article  Google Scholar 

  13. J-J. Wu, H-I. Wen, C-H. Tseng, and S-C. Liu: Well-aligned ZnO nanorods via hydrogen treatment of ZnO films. Adv. Funct. Mater. 14, 806 (2004).

    Article  CAS  Google Scholar 

  14. S.C. Lyu, Y. Zhang, C.J. Lee, H. Ruh, and H.J. Lee: Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chem. Mater. 15, 3294 (2003).

    Article  CAS  Google Scholar 

  15. H. Yuan and Y. Zhang: Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD. J. Cryst. Growth 263, 119 (2004).

    Article  CAS  Google Scholar 

  16. Z. Ye, J. Huang, W. Xu, J. Zhou, and Z. Wang: Catalyst-free MOCVD growth of aligned ZnO nanotip arrays on silicon substrate with controlled tip shape. Solid State Commun. 141, 464 (2007).

    Article  CAS  Google Scholar 

  17. L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang: General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 5, 1231 (2005).

    Article  CAS  Google Scholar 

  18. S. Xu, C. Lao, B. Weintraub, and Z. Lin: Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. J. Mater. Res. 23, 2072 (2008).

    Article  CAS  Google Scholar 

  19. S-F. Wang, T-Y. Tseng, Y-R. Wang, C-Y. Wang, H-C. Lu, and W-L. Shih: Effects of preparation conditions on the growth of ZnO nanorod arrays using aqueous solution method. Int. J. Appl. Ceram. Technol. 5, 419 (2008).

    Article  CAS  Google Scholar 

  20. S. Xu, N. Adiga, S. Ba, T. Dasgupta, C.F.J. Wu, and Z.L. Wang: Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments. ACS Nano 3, 1803 (2009).

    Article  CAS  Google Scholar 

  21. W. Zhang and K. Yanagisawa: Hydrothermal synthesis of ZnO long fibers. Chem. Lett. 34, 1170 (2005).

    Article  CAS  Google Scholar 

  22. L. Li, H. Yang, J. Yu, Y. Chen, J. Ma, J. Zhang, Y. Song, and F. Gao: Controllable growth of ZnO nanowires with different aspect ratios and microstructures and their photoluminescence and photosensitive properties. J. Cryst. Growth 311, 4199 (2009).

    Article  CAS  Google Scholar 

  23. H.E. Unalan, P. Hiralal, N. Rupesinghe, S. Dalal, W.I. Milne, and G.A.J. Amaratunga: Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 19, 255608 (2008).

    Article  Google Scholar 

  24. S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R.L. Snyder, and Z.L. Wang: Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J. Am. Chem. Soc. 130, 14958 (2008).

    Article  CAS  Google Scholar 

  25. Y. Sun, D.J. Riley, and M.N.R. Ashfold: Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. J. Phys. Chem. B 110, 15186 (2006).

    Article  CAS  Google Scholar 

  26. Y-J. Lee, T.L. Sounart, D.A. Scrymgeour, J.A. Voigt, and J.W.P. Hsu: Control of ZnO nanorod array alignment synthesized via seeded solution growth. J. Cryst. Growth 304, 80 (2007).

    Article  CAS  Google Scholar 

  27. Y-J. Lee, T.L. Sounart, J. Liu, E.D. Spoerke, B.B. McKenzie, J.W.P. Hsu, and J.A. Voigt: Tunable arrays of ZnO nanorods and Nanoneedles via seed layer and solution chemistry. Cryst. Growth Des. 8, 2036 (2008).

    Article  CAS  Google Scholar 

  28. Y. Qin, R. Yang, and Z.L. Wang: Growth of horizontal ZnO nanowire arrays on any substrate. J. Phys. Chem. C 112, 18734 (2008).

    Article  CAS  Google Scholar 

  29. Y-J. Kim, C-H. Lee, Y.J. Hong, G-C. Yi, S.S. Kim, and H. Cheong: Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method. Appl. Phys. Lett. 89, 163128 (2006).

    Article  Google Scholar 

  30. L. Vayssieres: Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464 (2003).

    Article  CAS  Google Scholar 

  31. B.D. Yuhas, D.O. Zitoun, P.J. Pauzauskie, R. He, and P. Yang: Transition-metal-doped zinc oxide nanowires. Angew. Chem. Int. Ed. 45, 420 (2006).

    Article  CAS  Google Scholar 

  32. P-X. Gao, J. Liu, B.A. Buchine, B. Weintraub, Z.L. Wang, and J.L. Lee: Bridged ZnO nanowires across trenched electrodes. Appl. Phys. Lett. 91, 142108 (2007).

    Article  Google Scholar 

  33. S-H. Jung, E. Oh, K-H. Lee, W. Park, and S-H. Jeong: A sonochemical method for fabricating aligned ZnO nanorods. Adv. Mater. 19, 749 (2007).

    Article  CAS  Google Scholar 

  34. Y. Xi, J. Song, S. Xu, R. Yang, Z. Gao, C. Hu, and Z.L. Wang: Growth of ZnO nanotube arrays and nanotube-based piezoelectric nanogenerators. J. Mater. Chem. 19, 9260 (2009).

    Article  CAS  Google Scholar 

  35. J-S. Huang, and C-F. Lin: Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing. J. Appl. Phys. 103, 014304 (2008).

    Article  Google Scholar 

  36. S.E. Ahn, J.S. Lee, H. Kim, S. Kim, B.H. Kang, K.H. Kim, and G.T. Kim: Photoresponse of sol-gel-synthesized ZnO nanorods. Appl. Phys. Lett. 84, 5022 (2004).

    Article  CAS  Google Scholar 

  37. P.S. Kumar, A.D. Raj, D. Mangalaraj, and D. Nataraj: Growth and characterization of ZnO nanostructured thin films by a two-step chemical method. Appl. Surf. Sci. 255, 2382 (2008).

    Article  CAS  Google Scholar 

  38. J. Elias, R. Tena-Zaera, and C. Lévy-Clément: Electrochemical deposition of ZnO nanowire arrays with tailored dimensions. J. Electroanal. Chem. 621, 171 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. 109M084 and 109M487 and the Distinguished Young Scientist Award of the Turkish Academy of Sciences (TUBA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husnu Emrah Unalan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akgun, M.C., Kalay, Y.E. & Unalan, H.E. Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt. Journal of Materials Research 27, 1445–1451 (2012). https://doi.org/10.1557/jmr.2012.92

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.92

Navigation