Skip to main content
Log in

Monte Carlo simulations of crystallization in heterogeneous copolymers: The role of copolymer fractions with intermediate comonomer content

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Heterogeneous copolymers contain diverse comonomer contents among copolymers, and the extremely diverse case becomes a binary polymer blend. We report a numerical study of crystallization in two series of heterogeneous copolymers that are separated with strong and weak heterogeneities of comonomer distributions, and both of which are composed of crystallizable monomers and noncrystallizable comonomers with various compositions. A comparison of simulation results between these two series of samples demonstrates that, something like a compatibilizer in an incompatible polymer blend, copolymer fractions with intermediate comonomer contents between two compositional extremities depress the prior liquid–liquid demixing on cooling, and hence weaken the subsequent crystallization behaviors. However, we found that in these intermediate fractions, comonomers distribute quite homogeneously on each chain and the amphiphilicity occurs on multiple short sequences, rather than like on a diblock copolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. W. Ring, I. Mita, A.D. Jenkins, and N.M. Bikales: Source-based nomenclature for copolymers. Pure Appl. Chem. 57, 1427 (1985).

    Article  CAS  Google Scholar 

  2. W.B. Hu, V.B.F. Mathot, and D. Frenkel: Phase transitions of bulk statistical copolymers studied by dynamic Monte Carlo simulations. Macromolecules 36, 2165 (2003).

    Article  CAS  Google Scholar 

  3. V.B.F. Mathot: Polycon’84 LLDPE (Plast. Rubber Inst., Chameleon Press, London, 1984), p. 1.

    Google Scholar 

  4. P. Schouterden, G. Groeninckx, B. van der Heyden, and F. Jansen: Fractionation and thermal behaviour of linear low-density polyethylene. Polymer 28, 2099 (1987).

    Article  CAS  Google Scholar 

  5. S. Hosoda: Structural distribution of linear low-density polyethylenes. Polym. J. 20, 383 (1988).

    Article  CAS  Google Scholar 

  6. E. Karbashewski, L. Kale, A. Rudin, W.J. Tchir, D.G. Cook, and J.O. Pronovost: Characterization of linear low-density polyethylene by temperature rising elution fractionation and by differential scanning calorimetry. J. Appl. Polym. Sci. 44, 425 (1992).

    Article  CAS  Google Scholar 

  7. F.M. Mirabella and E.A. Ford: Characterization of linear low-density polyethylene: Cross-fractionation according to copolymer composition and molecular weight. J. Polym. Sci., Polym. Phys. 25, 777 (1987).

    Article  CAS  Google Scholar 

  8. R.A.C. Deblieck and V.B.F. Mathot: Morphology of heterogeneous ethylene-octene copolymers with very low densities (VLDPEs). J. Mater. Sci. Lett. 7, 1276 (1988).

    Article  CAS  Google Scholar 

  9. B. Crist and M.J. Hill: Recent developments in phase separation of polyolefin melt blends. J. Polym. Sci., Polym. Phys. 35, 2329 (1997).

    Article  CAS  Google Scholar 

  10. R.G. Alamo, W.W. Graessley, R. Krishnamoorti, D.J. Lohse, J.D. Londono, L. Mandelkern, F.C. Stehling, and G.D. Wignall: Small angle neutron scattering investigations of melt miscibility and phase segregation in blends of linear and branched polyethylenes as a function of the branch content. Macromolecules 30, 561 (1997).

    Article  CAS  Google Scholar 

  11. Q. Fu, F.C. Chiu, K.W. McCreight, M. Guo, W.W. Tseng, S.Z.D. Cheng, M.Y. Keating, E. Hsieh, and P.J. DesLauriers: Effects of the phase-separated melt on crystallization behavior and morphology in short chain branched metallocene polyethylenes. J. Macromol. Sci., Phys. B36, 41 (1997).

    Article  CAS  Google Scholar 

  12. F. Chen, R. Shanks, and G. Amarasinghe: Miscibility behavior of metallocene polyethylene blends. J. Appl. Polym. Sci. 81, 2227 (2001).

    Article  CAS  Google Scholar 

  13. H. Wang, K. Shimizu, H. Kim, E.K. Hobbie, Z.G. Wang, and C.C. Han: Competing growth kinetics in simultaneously crystallizing and phase-separating polymer blends. J. Chem. Phys. 116, 7311 (2002).

    Article  CAS  Google Scholar 

  14. X.H. Zhang, X. Dong, D.J. Wang, and C.C. Han: Interplay between two phase transitions: Crystallization and liquid-liquid phase separation in a polyolefin blend. J. Chem. Phys. 125, 024907 (2006).

    Article  Google Scholar 

  15. S.J. Wang, C.J. Wu, M.Q. Ren, M. Van Horn Ryan, J. Graham Matthew, C.C. Han, E.Q. Chen, and Z.D. Cheng: Liquid–liquid phase separation in a polyethylene blend monitored by crystallization kinetics and crystal-decorated phase morphologies. Polymer 50, 1025 (2009).

    Article  CAS  Google Scholar 

  16. S. Katsumi, H. Wang, Z.G. Wang, G. Matsuba, H. Kim, and C.C. Han: Crystallization and phase separation kinetics in blends of linear low-density polyethylene copolymers. Polymer 45, 7061 (2004).

    Article  Google Scholar 

  17. W.B. Hu and V.B.F. Mathot: Liquid–liquid demixing in a binary polymer blend driven solely by the component-selective crystallizability. J. Chem. Phys. 119, 10953 (2003).

    Article  CAS  Google Scholar 

  18. Y. Ma, L.Y. Zha, W.B. Hu, and C.C. Han: Crystal nucleation enhanced at the diffuse interface of immiscible polymer blends. Phy. Rev. E 77, 061801 (2008).

    Article  Google Scholar 

  19. H. Cai, X. Luo, D. Ma, J. Wang, and H. Tan: Structure and properties of impact copolymer polypropylene. I. Chain structure. J. Appl. Polym. Sci. 71, 93 (1999).

    Article  CAS  Google Scholar 

  20. H. Cai, X. Luo, X. Chen, D. Ma, J. Wang, and H. Tan: Structure and properties of impact copolymer polypropylene. II. Phase structure and crystalline morphology. J. Appl. Polym. Sci. 71, 103 (1999).

    Article  CAS  Google Scholar 

  21. Z. Fu, Z. Fan, Y. Zhang, and L. Feng: Structure and morphology of polypropylene/poly(ethylene-co-propylene) in situ blends synthesized by spherical Ziegler–Natta catalyst. Eur. Polym. J. 39, 795 (2003).

    Article  CAS  Google Scholar 

  22. R.F. Chen, Y.G. Shangguan, C.H. Zhang, F. Chen, E. Harkin-Jone, and Q. Zheng: Influence of molten-state annealing on the phase structure and crystallization behaviour of high impact polypropylene copolymer. Polymer 52, 2956 (2011).

    Article  CAS  Google Scholar 

  23. C.H. Zhang, R.F. Chen, Y.G. Shangguan, and Q. Zheng: Study on high weld strength of impact propylene copolymer/high density polyethylene laminates. Chinese J. Polym. Sci. 29, 497 (2011).

    Article  CAS  Google Scholar 

  24. W-B. Hu, F.G. Karssenberg, and V.B.F. Mathot: How a sliding restriction of comonomers affects crystallization and melting of homogeneous copolymers. Polymer 47, 5582 (2006).

    Article  CAS  Google Scholar 

  25. C. De Rosa, F. Auriemma, O.R. de Ballesteros, L. Resconi, and I. Camurati: Crystallization behavior of isotactic propylene−ethylene and propylene−butene copolymers: Effect of comonomers versus stereo-defects on crystallization properties of isotactic polypropylene. Macromolecules 40, 6600 (2007).

    Article  Google Scholar 

Download references

Acknowledgment

We are grateful to the stimulating discussions offered by Prof. Yonggang Shangguan at Zhejiang University. The financial support from National Natural Science Foundation of China (Grant No. 20825415) and from the National Basic Research Program of China (Grant No. 2011CB606100) is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbing Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, F., Gao, H. & Hu, W. Monte Carlo simulations of crystallization in heterogeneous copolymers: The role of copolymer fractions with intermediate comonomer content. Journal of Materials Research 27, 1383–1388 (2012). https://doi.org/10.1557/jmr.2012.9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.9

Navigation