Skip to main content
Log in

Electrospun nylon fibers for the improvement of mechanical properties and for the control of degradation behavior of poly(lactide)-based composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Poly(lactide) (PLA) composites filled with electrospun nylon 6 fibers were prepared. This allowed us to simultaneously improve the mechanical properties and tune the degradation of the PLA matrix. The interfacial adhesion between the PLA matrix and the nylon fibers was good. The major effect of electrospun fibers on the matrix was that of modifying the semicrystalline framework, thickening the polymer lamellae. This allowed an increase in the mechanical properties of the material, and on the other hand to modify its degradation behavior. The modulus of the composites was increased up to 3-fold with respect to neat PLA. The peculiar morphology of matrix–filler interaction moreover slowed down the degradation rate of the material and improved the dimensional stability of the specimens during the degradation process. This shows the potential of electrospun fibers as a way to tune the durability of PLA-based products, widening the range of application of this promising material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
TABLE II.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
TABLE III.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.

Similar content being viewed by others

References

  1. S. Sinha Ray and M. Okamoto: Biodegradable polylactide and its nanocomposites: Opening a new dimension for plastics and composites. Macromol. Rapid Commun. 24, 815 (2003).

    Google Scholar 

  2. S. Sinha Ray and J. Ramontjia: Polylactide-based nanocomposites, in Biodegradable Polymers Blends and Composites from Renewable Resources, edited by L. Yu (Wiley, Hoboken, NJ, 2009), pp. 389–414.

    Google Scholar 

  3. K. Oksman, M. Skrifvars, and J.F. Selin: Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 63, 1317 (2003).

    CAS  Google Scholar 

  4. N. Graupner, A.S. Herrmann, and J. Müssig: Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Composites Part A 40, 810 (2009).

    Google Scholar 

  5. M.S. Huda, L.T. Drzal, M. Misra, and A.K. Mohanty: Wood-fiber-reinforced poly(lactic acid) composites: Evaluation of the physicomechanical and morphological properties. J. Appl. Polym. Sci. 102, 4856 (2006).

    CAS  Google Scholar 

  6. Q.K. Meng, M. Hetzer, and D. De Kee: PLA/clay/wood nanocomposites: Nanoclay effects on mechanical and thermal properties. J. Compos. Mater. 45, 1145 (2010).

    Google Scholar 

  7. L.S. Wang, H.C. Chen, Z.C. Xiong, X.B. Pang, and C.D. Xiong: A completely biodegradable poly[(l-lactide)-co-(e-caprolactone)] elastomer reinforced by in situ poly(glycolic acid) fibrillation: Manufacturing and shape-memory effects. Macromol. Mater. Eng. 295, 381 (2010).

    CAS  Google Scholar 

  8. L. Suryanegara, A.N. Nakagaito, and H. Yano: The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos. Sci. Technol. 69, 1187 (2009).

    CAS  Google Scholar 

  9. R. Rizvi, O. Khan, and H.E. Naguib: Development and characterization of solid and porous polylactide-multiwall carbon nanotube composites. Polym. Eng. Sci. 51, 43 (2011).

    CAS  Google Scholar 

  10. D. Wu, L. Wu, W. Zhou, M. Zhang, and T. Yang: Crystallization and biodegradation of polylactide/carbon nanotube composites. Polym. Eng. Sci. 50, 1721 (2010).

    CAS  Google Scholar 

  11. W.M. Chiu, Y.A. Chang, H.Y. Kuo, M.H. Lin, and H.C. Wen: A study of carbon nanotubes/biodegradable plastic polylactic acid composites. J. Appl. Polym. Sci. 108, 3024 (2008).

    CAS  Google Scholar 

  12. A. Zucchelli, M.L. Focarete, C. Gualandi, and S. Ramakrishna: Electrospun nanofibers for enhancing structural performance of composite materials. Polym. Adv. Technol. 22, 339 (2010).

    Google Scholar 

  13. R. Neppalli, C. Marega, A. Marigo, M.P. Bajgai, H.Y. Kim, and V. Causin: Poly(epsilon-caprolactone) filled with electrospun nylon fibres: A model for a facile composite fabrication. Eur. Polym. J. 46, 968 (2010).

    CAS  Google Scholar 

  14. R. Neppalli, C. Marega, A. Marigo, M.P. Bajgai, H.Y. Kim, and V. Causin: Improvement of tensile properties and tuning of the biodegradation behavior of polycaprolactone by addition of electrospun fibers. Polymer 52, 4054 (2011).

    CAS  Google Scholar 

  15. M. Swart, R.T. Olsson, M.S. Hedenqvist, and P.E. Mallon: Organic–inorganic hybrid copolymer fibers and their use in silicone laminate composites. Polym. Eng. Sci. 50, 2143 (2010).

    CAS  Google Scholar 

  16. J.S. Kim and D.H. Reneker: Mechanical properties of composites using ultrafine electrospun fibers. Polym. Compos. 20, 124 (1999).

    CAS  Google Scholar 

  17. M.M. Bergshoef and G.J. Vancso: Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement. Adv. Mater. 11, 1362 (1999).

    CAS  Google Scholar 

  18. G.M. Bayley, M. Hedenqvist, and P.E. Mallon: Large strain and toughness enhancement of poly(dimethyl siloxane) composite films filled with electrospun polyacrylonitrile-graft-poly(dimethyl siloxane) fibres and multi-walled carbon nanotubes. Polymer 52, 4061 (2011).

    CAS  Google Scholar 

  19. K.P. Matabola, A.R. de Vries, A.S. Luyt, and R. Kumar: Studies on single polymer composites of poly(methyl methacrylate) reinforced with electrospun nanofibers with a focus on their dynamic mechanical properties. Express Polym. Lett. 5, 636 (2011).

    Google Scholar 

  20. L.S. Chen, Z.M. Huang, G.H. Dong, C.L. He, L. Liu, Y.Y. Hu, and Y. Li: Development of a transparent PMMA composite reinforced with nanofibers. Polym. Compos. 30, 239 (2009).

    Google Scholar 

  21. H. Fong: Electrospun nylon 6 nanofiber reinforced BIS-GMA/TEGDMA dental restorative composite resins. Polymer 45, 2427 (2004).

    CAS  Google Scholar 

  22. M. Tian, Y. Gao, Y. Liu, Y. Liao, R. Xu, N.E. Hedin, and H. Fong: Bis-GMA/TEGDMA dental composites reinforced with electrospun nylon 6 nanocomposite nanofibers containing highly aligned fibrillar silicate single crystals. Polymer 48, 2720 (2007).

    CAS  Google Scholar 

  23. A.M. Hindeleh and D.J. Johnson: The resolution of multipeak data in fiber science. J. Phys. D: Appl. Phys. 4, 259 (1971).

    CAS  Google Scholar 

  24. C.G. Vonk: Synthetic polymers in the solid state, in Small Angle X-ray Scattering, edited by O. Glatter and O. Kratky (Academic press, London, 1982), p. 433.

    Google Scholar 

  25. D. Blundell: Models for small-angle X-ray scattering from highly dispersed lamellae. Polymer (Guildf.) 19, 1258 (1978).

    CAS  Google Scholar 

  26. C. Marega, A. Marigo, G. Cingano, R. Zannetti, and G. Paganetto: Small-angle X-ray scattering from high-density polyethylene: Lamellar thickness distributions. Polymer (Guildf.) 37, 5549 (1996).

    CAS  Google Scholar 

  27. C. Marega, A. Marigo, and V. Causin: Small-angle X-ray scattering from polyethylene: Distorted lamellar structures. J. Appl. Polym. Sci. 90, 2400 (2003).

    CAS  Google Scholar 

  28. C. Marega, V. Causin, and A. Marigo: A SAXS-WAXD study on the mesomorphic-α transition of isotactic polypropylene. J. Appl. Polym. Sci. 109, 32 (2008).

    CAS  Google Scholar 

  29. R. Hosemann and S.N. Bagchi: Direct Analysis of Diffraction by Matter (North-Holland Pub. Co, Amsterdam, 1962).

    Google Scholar 

  30. M. Avrami: Granulation, phase change, and microstructure kinetics of phase change III. J. Chem. Phys. 9, 177 (1941).

    CAS  Google Scholar 

  31. D.M. Lincoln, R.A. Vaia, Z.G. Wang, B.S. Hsiao, and R. Krishnamoorti: Temperature dependence of polymer crystalline morphology in nylon 6/montmorillonite nanocomposites. Polymer 42, 9975 (2001).

    CAS  Google Scholar 

  32. D. Homminga, B. Goderis, I. Dolbnya, H. Reynaers, and G. Groeninckx: Crystallization behavior of polymer/montmorillonite nanocomposites. Part I. Intercalated poly(ethylene oxide). Polymer 46, 11359 (2005).

    CAS  Google Scholar 

  33. C. Marega, V. Causin, A. Marigo, G. Ferrara, and H. Tonnaer: Perkalite as an innovative filler for isotactic polypropylene-based nanocomposites. J. Nanosci. Nanotechnol. 9, 2704 (2009).

    CAS  Google Scholar 

  34. V. Causin, B.X. Yang, C. Marega, S.H. Goh, and A. Marigo: Structure-property relationship in polyethylene reinforced by polyethylene-grafted multiwalled carbon nanotubes. J. Nanosci. Nanotech. 8, 1790 (2008).

    CAS  Google Scholar 

  35. V. Causin, B.X. Yang, C. Marega, S.H. Goh, and A. Marigo: Nucleation, structure and lamellar morphology of isotactic polypropylene filled with polypropylene-grafted multiwalled carbon nanotubes. Eur. Polym. J. 45, 2155 (2009).

    CAS  Google Scholar 

  36. V. Causin, C. Marega, R. Saini, A. Marigo, and G. Ferrara: Crystallization behavior of isotactic polypropylene based nanocomposites. J. Therm. Anal. Calorim. 90, 849 (2007).

    CAS  Google Scholar 

  37. S. Hambir, N. Bulakh, and J.P. Jog: Polypropylene/clay nanocomposites: Effect of compatibilizer on the thermal, crystallization and dynamic mechanical behavior. Polym. Eng. Sci. 42, 1800 (2002).

    CAS  Google Scholar 

  38. J. Ma, S. Zhang, Z. Qi, L. Li, and Y. Hu: Crystallization behaviors of polypropylene/montmorillonite nanocomposites. J. Appl. Polym. Sci. 83, 1978 (2002).

    CAS  Google Scholar 

  39. P. Maiti, P.H. Nam, M. Okamoto, N. Hasegawa, and A. Usuki: Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites. Macromolecules 35, 2042 (2002).

    CAS  Google Scholar 

  40. V. Causin, C. Marega, A. Marigo, G. Ferrara, and A. Ferraro: Morphological and structural characterization of polypropylene/conductive graphite nanocomposites. Eur. Polym. J. 42, 3153 (2006).

    CAS  Google Scholar 

  41. Z. Su, W. Guo, Y. Liu, Q. Li, and C. Wu: Non-isothermal crystallization kinetics of poly(lactic acid)/modified carbon black composite. Polym. Bull. 62, 629 (2009).

    CAS  Google Scholar 

  42. S.M. Huang, J.J. Hwang, H.J. Liu, and L.H. Lin: Crystallization behavior of poly(l-lactic acid)/montmorillonite nanocomposites. J. Appl. Polym. Sci. 117, 434 (2010).

    CAS  Google Scholar 

  43. M. Li, D. Hu, Y. Wang, and C. Shen: Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polym. Eng. Sci. 50, 2298 (2010).

    CAS  Google Scholar 

  44. T. Dobreva, J.M. Perena, E. Pérez, R. Benavente, and M. Garcìa: Crystallization behavior of poly(l-lactic acid)-based ecocomposites prepared with kenaf fiber and rice straw. Polym. Compos. 31, 974 (2010).

    CAS  Google Scholar 

  45. Y.T. Shieh, T.K. Twu, C.C. Su, R.H. Lin, and G.L. Liu: Crystallization kinetics study of poly(l-lactic acid)/carbon nanotubes nanocomposites. J. Polym. Sci. B: Polym. Phys. 48, 983 (2010).

    CAS  Google Scholar 

  46. R. Mat Taib, S. Ramarad, Z.A. Mohd Ishak, and M. Todo: Properties of kenaf fiber/polylactic acid biocomposites plasticized with polyethylene glycol. Polym. Compos. 31, 1213 (2010).

    Google Scholar 

  47. R. Neppalli, V. Causin, C. Marega, R. Saini, M. Mba, and A. Marigo: Structure, morphology and biodegradability of poly(ε-caprolactone) based nanocomposites. Polym. Eng. Sci. (2011, in press).

    Google Scholar 

  48. S. Sinha Ray, K. Yamada, M. Okamoto, and K. Ueda: New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44, 857 (2003).

    CAS  Google Scholar 

  49. M. Jollands and R.K. Gupta: Effect of mixing conditions on mechanical properties of polylactide/montmorillonite clay nanocomposites. J. Appl. Polym. Sci. 118, 1489 (2010).

    CAS  Google Scholar 

  50. Y. Di, S. Iannace, E. Di Maio, and L. Nicolais: Poly(lactic acid)/organoclay nanocomposites: Thermal, rheological properties and foam processing. J. Polym. Sci. B: Polym. Phys. 43, 689 (2005).

    CAS  Google Scholar 

  51. R.W. Truss and T.K. Yeow: Effect of exfoliation and dispersion on the yield behavior of melt-compounded polyethylene-montmorillonite nanocomposites. J. Appl. Polym. Sci. 100, 3044 (2006).

    CAS  Google Scholar 

  52. B. Pukanszky, I. Mudra, and P. Staniek: Relation of crystalline structure and mechanical properties of nucleated polypropylene. J. Vinyl Add. Technol. 3, 53 (1997).

    CAS  Google Scholar 

  53. I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, and J.M. Kenny: Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym. Degrad. Stab. 95, 2126 (2010).

    CAS  Google Scholar 

  54. Q. Zhou and M. Xanthos: Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polym. Degrad. Stab. 93, 1450 (2008).

    CAS  Google Scholar 

  55. S. Sinha Ray, K. Yamada, M. Okamoto, and K. Ueda: Control of biodegradability of polylactide via nanocomposite technology. Macromol. Mater. Eng. 288, 203 (2003).

    Google Scholar 

  56. M.A. Paul, C. Delcourt, M. Alexandre, P. Degee, F. Monteverde, and P. Dubois: Polylactide/montmorillonite nanocomposites: Study of the hydrolytic degradation. Polym. Degrad. Stab. 87, 535 (2005).

    CAS  Google Scholar 

  57. F. Mei, J.S. Zhong, X.P. Yang, X.Y. Ouyang, S. Zhang, X.Y. Hu, Q. Ma, J.G. Lu, S.K. Ryu, and X.L. Deng: Improved biological characteristics of poly(l-lactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules 8, 3729 (2007).

    CAS  Google Scholar 

Download references

Acknowledgment

Ramesh Neppalli is grateful to Fondazione Cassa di Risparmio di Padova e Rovigo for the support of his Ph.D. grant. This work was financed by the PRAT project of the University of Padova CPDA099194/09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Causin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neppalli, R., Marega, C., Marigo, A. et al. Electrospun nylon fibers for the improvement of mechanical properties and for the control of degradation behavior of poly(lactide)-based composites. Journal of Materials Research 27, 1399–1409 (2012). https://doi.org/10.1557/jmr.2012.70

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.70

Navigation