Skip to main content
Log in

Effect of precipitation temperature and organic additives on size and morphology of ZnO nanoparticles

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Low temperature (25 °C–80 °C) synthesis of zinc oxide (ZnO) nanoparticles (,20 nm) at short synthesis periods (;30 min) was achieved by precipitation. The precipitation system was formed using zinc acetate dihydrate as zinc source, ethylene glycol (EG) as solvent and polyvinyl pyrrolidone (PVP) as chelating agent. The size of spherical ZnO nanoparticles was manipulated by the choice of precipitation temperature (13.0 6 1.9 nm at 25 °C and 9.0 6 1.3 nm at 80 °C), which essentially changes the nature of adsorption events between ZnO crystals and organic molecules. The particle size can also be regulated by the amount of chelating agent as a result of further enhancement in adsorption between ZnO crystals and organic additives. The spherical ZnO nanoparticles were agglomerated into triangular form when different solvent was used–by substituting water for EG, which has different adsorption ability. Accordingly, formation and growth mechanisms controlling the size and morphology of ZnO nanoparticles have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
TABLE II.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. T.K. Gupta: Application of zinc oxide varistors. J. Am. Ceram. Soc. 73, 1817 (1990).

    Article  CAS  Google Scholar 

  2. M. Singhai, V. Chhabra, P. Kang, and D.O. Shah: Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol of microemulsion. Mater. Res. Bull. 32, 239 (1997).

    Article  Google Scholar 

  3. T. Gao and T.H. Wang: Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications. Appl. Phys. A 80, 1451 (2005).

    Article  CAS  Google Scholar 

  4. L. Liao, H.B. Lu, J.C. Li, H. He, D.F. Wang, D.J. Fu, C. Liu, and W.F. Zhang: Size dependence of gas sensitivity of ZnO nanorods. J. Phys. Chem. C 111, 1900 (2007).

    Article  CAS  Google Scholar 

  5. Y.B. Li, Y. Bando, and D. Golberg: ZnO nanoneedles with tip surface perturbations: Excellent field emitters. Appl. Phys. Lett. 84, 3603 (2004).

    Article  CAS  Google Scholar 

  6. C-L. Cheng, S-H. Chao, and Y-F. Chen: Enhancement of field emission in nanotip-decorated ZnO nanobottles. J. Cryst. Growth 311, 4381 (2009).

    Article  CAS  Google Scholar 

  7. K. Ramamoorthy, C. Sanjeeviraja, M. Jayachandran, K. Sankaranarayanan, P. Bhattacharya, and L.M. Kukreja: Preparation and characterization of ZnO thin films on InP by laser-molecular beam epitaxy technique for solar cells. J. Cryst. Growth 226, 281 (2001).

    Article  CAS  Google Scholar 

  8. S. Choopun, A. Tubtimtae, T. Santhaveesuk, S. Nilphai, E. Wongrat, and N. Hongsith: Zinc oxide nanostructures for applications as ethanol sensors and dye-sensitized solar cells. Appl. Surf. Sci. 256, 998 (2009).

    Article  CAS  Google Scholar 

  9. B. Liu and H.C. Zeng: Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125, 4430 (2003).

    Article  CAS  Google Scholar 

  10. U. Pal and P. Santiago: Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. J. Phys. Chem. B 109, 15317 (2005).

    Article  CAS  Google Scholar 

  11. R. Ayouchi, F. Martin, D. Leinen, and J.R. Ramos-Barrado: Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon. J. Cryst. Growth 247, 497 (2003).

    Article  CAS  Google Scholar 

  12. M.T. Htay, Y. Hashimoto, N. Momose, and K. Ito: Position-selective growth of ZnO nanowires by ultrasonic spray pyrolysis. J. Cryst. Growth 311, 4499 (2009).

    Article  CAS  Google Scholar 

  13. M. Ristic, S. Music, M. Ivanda, and S. Popovic: Sol-gel synthesis and characterization of nanocrystalline ZnO powders. J. Alloys Compd. 397, L1 (2005).

    Article  CAS  Google Scholar 

  14. J. Li, S. Srinivasan, G.N. He, J.Y. Kang, S.T. Wu, and F.A. Ponce: Synthesis and luminescence properties of ZnO nanostructures produced by the sol-gel method. J. Cryst. Growth 310, 599 (2008).

    Article  CAS  Google Scholar 

  15. T. Ahmad, S. Vaidya, N. Sarkar, S. Ghosh, and A.K. Ganguli: Zinc oxalate nanorods: A convenient precursor to uniform nanoparticles of ZnO. Nanotechnology 17, 1236 (2006).

    Article  CAS  Google Scholar 

  16. O.A. Yildirim and C. Durucan: Synthesis of zinc oxide nanoparticles elaborated by microemulsion method. J. Alloys Compd. 506, 944 (2010).

    Article  CAS  Google Scholar 

  17. D. Tao, W. Qian, Y. Huang, and F. Wei: A novel low-temperature method to grow single-crystal ZnO nanorods. J. Cryst. Growth 271, 353 (2004).

    Article  CAS  Google Scholar 

  18. J. Wang and L. Gao: Wet chemical synthesis of ultra long and straight single-crystalline ZnO nanowires and their excellent UV emission properties. J. Mater. Chem. 13, 2551 (2003).

    Article  CAS  Google Scholar 

  19. C. Wang, E. Shen, E. Wang, L. Gao, Z. Kang, C. Tian, Y. Lan, and C. Zhang: Controllable synthesis of ZnO nanocrystals via a surfactant-assisted alcohol thermal process at a low temperature. Mater. Lett. 59, 2867 (2005).

    Article  CAS  Google Scholar 

  20. R. Xie, D. Li, H. Zhang, D. Yang, M. Jiang, T. Sekiguchi, B. Liu, and Y. Bando: Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns. J. Phys. Chem. B 110, 19147 (2006).

    Article  CAS  Google Scholar 

  21. X. Sui, Y. Liu, C. Shao, Y. Liu, and C. Xu: Structural and photoluminescent properties of ZnO hexagonal nanoprisms synthesized by microemulsion with polyvinyl pyrrolidone served as surfactant and passivant. Chem. Phys. Lett. 424, 340 (2006).

    Article  CAS  Google Scholar 

  22. A. Drelinkiewicz, M. Hasik, S. Quillard, and C. Paluszkiewicz: Infrared and Raman studies of palladium-nitrogen-containing polymers interactions. J. Mol. Struct. 511-512, 205 (1999).

    Article  CAS  Google Scholar 

  23. R.F. Silva and M.E. Zaniquelli: Morphology of nanometric size particulate aluminum-doped zinc oxide films. Colloids Surf., A 198-199, 551 (2002).

    Article  Google Scholar 

  24. R. Wahab, Y-S. Kim, K. Lee, and H-S. Shin: Fabrication and growth mechanism of hexagonal zinc oxide nanorods via solution process. J. Mater. Sci. 45, 2967 (2010).

    Article  CAS  Google Scholar 

  25. S.A. Studenikin, N. Golego, and M. Cocivera: Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys. 84, 2287 (1998).

    Article  CAS  Google Scholar 

  26. C.L. Yang, J.N. Wang, W.K. Ge, L. Guo, S.H. Yang, and D.Z. Shen: Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots. J. Appl. Phys. 90, 4489 (2001).

    Article  CAS  Google Scholar 

  27. P.X. Gao and Z.L. Wang: Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process. J. Phys. Chem. B 108, 7534 (2004).

    Article  CAS  Google Scholar 

  28. Z.L. Wang: Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter 16, R829 (2004).

    Article  CAS  Google Scholar 

  29. L. Zhang and Y.J. Zhu: ZnO micro- and nanostructures: Microwave-assisted solvothermal synthesis, morphology control and photocatalytic properties. Appl. Phys. A 97, 847 (2009).

    Article  CAS  Google Scholar 

  30. M.H. Rashid, M. Raula, R.R. Bhattacharjee, and T.K. Mandal: Low-temperature polymer-assisted synthesis of shape-tunable zinc oxide nanostructures dispersible in both aqueous and nonaqueous media. J. Colloid Interface Sci. 339, 249 (2009)

    Article  CAS  Google Scholar 

  31. T. Ghoshal, S. Kar, and S. Chaudhuri: ZnO Doughnuts: Controlled synthesis, growth mechanism and optical properties. Cryst. Growth Des. 7, 136 (2006).

    Article  CAS  Google Scholar 

  32. S.F. Wei, J.S. Lian, and Q. Jiang: Controlling growth of ZnO rods by polyvinylpyrrolidone (PVP) and their optical properties. Appl. Surf. Sci. 255, 6978 (2009).

    Article  CAS  Google Scholar 

  33. J. Zhang, H. Liu, Z. Wang, and N. Ming: Low-temperature growth of ZnO with controllable shapes and band gaps. J. Cryst. Growth 310, 2848 (2008).

    Article  CAS  Google Scholar 

  34. C. Pacholski, A. Kornowski, and H. Weller: Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Ed. 41, 1188 (2002).

    Article  CAS  Google Scholar 

  35. C.W. Yao, H.P. Wu, M.Y. Ge, L. Yang, Y.W. Zeng, Y.W. Wang, and J.Z. Jiang: Triangle-shape ZnO prepared by thermal decomposition. Mater. Lett. 61, 3416 (2007).

    Article  CAS  Google Scholar 

  36. H. Muta, K. Ishida, E. Tamaki, and M. Satoh: An IR study on ion-specific and solvent-specific swelling of poly (N-vinyl-2-pyrrolidone) gel. Polymer 43, 103 (2002).

    Article  CAS  Google Scholar 

  37. J. Bai, Y. Li, C. Zhang, X. Liang, and Q. Yang: Preparing AgBr nanoparticles in poly (vinyl pyrrolidone) (PVP) nanofibers. Colloids Surf., A 329, 165 (2008).

    Article  CAS  Google Scholar 

  38. Z. Zhang, C. Shao, F. Gao, X. Li, and Y. Liu: Enhanced ultraviolet emission from highly dispersed ZnO quantum dots, embedded in poly (vinyl pyrrolidone) electrospun nanofibers. J. Colloid Interface Sci. 347, 215 (2010).

    Article  CAS  Google Scholar 

  39. R. Wahab, S.G. Ansari, Y.S. Kim, H.K. Seo, G.S. Kim, G. Khang, and H-S. Shin: Low temperature solution synthesis and characterization of ZnO nanoflowers. Mater. Res. Bull. 42, 1640 (2007).

    Article  CAS  Google Scholar 

  40. M. Haase, H. Weller, and A. Henglein: Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron storage on zinc oxide particles and size quantization. J. Phys. Chem. 92, 482 (1988).

    Article  CAS  Google Scholar 

  41. M.L. Singla, M. Shafeeq, and M.M. Kumar: Optical characterization of ZnO nanoparticles capped with various surfactants J. Lumin. 129, 434 (2009).

    Article  CAS  Google Scholar 

  42. M. Willander, O. Nur, J.R. Sadaf, M.I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain: Luminescence from zinc oxide nanostructures and polymers and their hybrid devices. Materials 3, 2643 (2010).

    Article  CAS  Google Scholar 

  43. H.S. Kang, J.S. Kang, J.W. Kim, and S.Y. Lee: Annealing effect on the property of ultraviolet and green emissions of ZnO thin films. J. Appl. Phys. 95, 1246 (2004).

    Article  CAS  Google Scholar 

  44. M. Liu, A.H. Kitai, and P. Mascher: Point defects and luminescence-centers in zinc oxide and zinc oxide doped with manganese. J. Lumin. 54, 35 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Middle East Technical University through Grant BAP-03-08-2009-06. OAY thanks The Scientific and Technological Research Council of Turkey, TUBITAK, for the support by the National Scholarship Program for Ph.D. students and also METU-OYP Program. The authors thank Yunus Eren Kalay for his assistance in TEM data analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caner Durucan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yıldırım, Ö.A., Durucan, C. Effect of precipitation temperature and organic additives on size and morphology of ZnO nanoparticles. Journal of Materials Research 27, 1452–1461 (2012). https://doi.org/10.1557/jmr.2012.58

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.58

Navigation