Skip to main content
Log in

Molecular dynamics study on the microstructure of dendrimers/graphite composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Under the COMPASS (condensed-phase optimized molecular potentials for atomistic simulation studies) force field, the molecular dynamics (MD) simulation was applied to first-to-third generation nanosize amine-based and butanediamine-based graphite/dendrimers composites. In this paper, we briefly introduced the constructive process of the composite system by means of MD simulation. The stability and mechanism of six intercalation composites were studied with microcosmic figure and variational energy under the invariable NVT ensemble. The energy variety was analyzed using the radial distribution function. The results indicate that the bulk of the dendrimer is small, the graphite layer is easy to bend and its systematic total energy is higher, which lead to the instability of the composite system. Therefore, the 3G dendrimer is the most stable system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. R. Matsumoto, Y. Oishi, and T. Arii: Thermal decomposition of cesium-ethylene- ternary graphite intercalation compounds. Thermochim. Acta 507–, 142 (2010).

    Article  Google Scholar 

  2. X-D. Bai, J. Cai, Y-J. You, X-G. Bai, and X. Xiao: Nanometer-grade composite of intercalation compounds structure analysis of graphite intercalation compounds (GIC). Acta Materiae Compositae Sinica 13 (3), 53 (1996).

    Google Scholar 

  3. S.M. Grayson and M.J. Fréchet: Convergent dendrons and dendrimers: From synthesis to applications. Chem. Rev. 101, 3819 (2001).

    Article  CAS  Google Scholar 

  4. Y-H. Qu, Q. Sun, F. Xiao, G-Y. Shi, and L-T. Jin: Layer-by-layer self-assembled acetylcholinesterase/PAMAM-Au on CNTs modified electrode for sensing pesticides. Bioelectrochemistry 77, 139 (2010).

    Article  CAS  Google Scholar 

  5. J-T. Yang, M-J. Wu, F. Chen, Z-D. Fei, and M-Q. Zhong: Preparation, characterization, and supercritical carbon dioxide foaming of polystyrene/graphene oxide composites. J. Supercrit. Fluids 56, 201 (2011).

    Article  CAS  Google Scholar 

  6. K. Kalaitzidou, H. Fukushima, and L.T. Drzal: A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos. Sci. Technol. 67, 2045 (2007).

    Article  CAS  Google Scholar 

  7. Y-X. Wang, L-P. Wang, and Q-J. Xue: Improvement in the tribological performances of Si3N4, SiC and WC by graphite-like carbon films under dry and water-lubricated sliding conditions. Surf. Coat. Technol. 205, 2770 (2011).

    Article  CAS  Google Scholar 

  8. S.S. Yilmaz, B.S. Unlu, and R. Varol: Effect of boronizing and shot peening in ferrous based FeCu–Graphite powder metallurgy material on wear, micro- structure and mechanical properties. Mater. Des. 31, 4496 (2010).

    Article  CAS  Google Scholar 

  9. P. Zhang, L. Song, H-D. Lu, J. Wang, and Y. Hu: The influence of expanded graphite on thermal properties for paraffin/high density polyethylene/chlorinated paraffin/antimony trioxide as a flame retardant phase change material. Energy Convers. Manage. 51, 2733 (2010).

    Article  CAS  Google Scholar 

  10. P. Zhang, Y. Hu, L. Song, J-X. Ni, W-Y. Xing, and J. Wang: Effect of expanded graphite on properties of high-density polyethylene/paraffin composite with intumescent flame retardant as a shape-stabilized phase change material. Sol. Energy Mater. Sol. Cells 94, 360 (2010).

    Article  CAS  Google Scholar 

  11. A.A. Al-Ghamdi and F. El-Tantawy: New electromagnetic wave shielding effectiveness at microwave frequency of polyvinyl chloride reinforced graphite/copper nanoparticles. Composites Part A 41, 1693 (2010).

    Article  Google Scholar 

  12. Z. Xu, Y-A. Huang, Y. Yang, J-Y. Shen, T. Tang, and R-S. Huang: Dispersion of ironnanoparticles on expanded graphite for the shielding of electromagnetic radiation. J. Magn. Magn. Mater. 322, 3084 (2010).

    Article  CAS  Google Scholar 

  13. M.A. Matties and R. Hentschke: Molecular dynamics simulation of benzene on graphite:1. Phase behavior of an adsorbed monolayer. Langmuir 12 (10), 2495 (1996).

    Article  CAS  Google Scholar 

  14. P. Fouqueta, M.R. Johnsona, H. Hedgelandb, A.P. Jardineb, J. Ellisb, and W. Allisonb: Molecular dynamics simulations of the diffusion of benzene submonolayer films on graphite basal plane surfaces. Carbon 47, 2627 (2009).

    Article  Google Scholar 

  15. E. Canetta and G. Maino: Molecular dynamic analysis of the structure of dendrimers. Nucl. Instrum. Methods Phys. Res., Sect. B 213, 71 (2004).

    Article  CAS  Google Scholar 

  16. H.C. Andersen: Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2374 (1980).

    Article  Google Scholar 

  17. M. Parrinello and A. Rahman: Strain fluctuations and elastic constants. J. Chem. Phys. 76, 2662 (1982).

    Article  CAS  Google Scholar 

  18. A. Ito, Y. Wang, S. Irle, K. Morokuma, and H. Nakamura: Molecular dynamics simulation of hydrogen atom sputtering on the surface of graphite with defect and edge. J. Nucl. Mater. 390–, 183 (2009).

    Article  Google Scholar 

  19. S-W. Zuo, J-W. Shen, and J. Hou: Preparation, structure and electrical conductivity of polyethylene/graphite nanocomposites. Acta Materiae Compositae Sinica 22 (1), 15 (2005).

    CAS  Google Scholar 

  20. G. Otieno and J.Y. Kim: Conductive graphite/polyurethane composite films using amphiphilic reactive dispersant: Synthesis and characterization. J. Ind. Eng. Chem. 14 (2), 187 (2008).

    Article  CAS  Google Scholar 

  21. M. Murariu, A.L. Dechief, L. Bonnaud, Y. Paint, A. Gallos, G. Fontaine, S. Bourbigot, and P. Dubois: The production and properties of polylactide composites filled with expanded graphite. Polym. Degrad. Stab. 95 (5), 889 (2010).

    Article  CAS  Google Scholar 

  22. T. Terao and T. Nakayama: Molecular dynamics study of dendrimers: Structure and effective interaction. Macromolecules 37, 4686 (2004).

    Article  CAS  Google Scholar 

  23. X.Z. Yang: Molecular Simulation and Polymer Materials (Science Publishing Company, Beijing, China, 2002; pp. 47–48).

    Google Scholar 

  24. D. Frenkel, W. Smit. C: Wang Translation: Molecular Simulation-From Algorithm to Application (Chemical Industry Press, Beijing, China, 2002; pp. 120–125).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the financial support from the Natural Science Foundation of Gansu Province (1010RJZA023), Technology R&D Program Plan of Gansu Province (1104GKCA019) and also supported by the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zunli Mo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, R., Han, W., Mo, Z. et al. Molecular dynamics study on the microstructure of dendrimers/graphite composites. Journal of Materials Research 27, 1124–1130 (2012). https://doi.org/10.1557/jmr.2012.48

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.48

Navigation