Skip to main content
Log in

Postdeposition annealing of NiOx thin films: A transition from n-type to p-type conductivity for short wave length optoelectronic devices

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The present work highlights the effect of postdeposition annealing (373–773 K) on the tunability of electrical conductivity of radio frequency sputtered NiOx thin films with both n-type and p-type behavior. The NiOx thin films were polycrystalline with preferred (200) orientation with high optical transmission. The as-grown NiOx thin film exhibits an n-type behavior with room temperature resistivity of 4.80 × 10−3 Ω-cm and majority carrier (electrons) concentration of about 3.90 × 1020 cm−3. Film annealed at 473 K was p-type having resistivity of 1.54 × 10−1 Ω-cm and majority carrier (hole) concentration of about 4.45 × 1018 cm−3. Hall effect and thermoelectric power measurements confirm a transition in electrical conduction from n-type to p-type with postdeposition annealing at 473 K. The observed tunability of electrical conductivity of NiOx thin film will pave way toward realization of p-n homojunction for short wave length optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
TABLE II.
FIG. 4.
FIG. 5.
FIG. 6.
TABLE III.
FIG. 7.
TABLE IV.
FIG. 8.
FIG. 9.
FIG. 10.

Similar content being viewed by others

REFERENCES

  1. I. Fasaki, A. Giannoudakos, M. Stamataki, M. Kompitsas, E. György, I.N. Mihailescu, F. Roubani-Kalantzopoulou, A. Lagoyannis, and S. Harissopulos: Nickel oxide thin films synthesized by reactive pulsed laser deposition: Characterization and application to hydrogen sensing. Appl. Phys. A 91, 487 (2008).

    Article  CAS  Google Scholar 

  2. S.R. Krishnakumar, M. Liberati, C. Grazioli, M. Veronese, S. Turchini, P. Luches, S. Valeri, and C. Carbone: Magnetic linear dichroism studies of in situ grown NiO thin films. J. Magn. Magn. Mater. 310, 8 (2007).

    Article  CAS  Google Scholar 

  3. H. Liu, W. Zheng, X. Yan, and B. Feng: Studies on electrochromic properties of nickel oxide thin films prepared by reactive sputtering. J. Alloys Compd. 462, 356 (2008).

    Article  CAS  Google Scholar 

  4. M. Tyagi, M. Tomar, and V. Gupta: Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor. Anal. Chim. Acta 726, 93 (2012).

    Article  CAS  Google Scholar 

  5. X. Chen, N.J. Wu, L. Smith, and A. Ignatiev: Thin-film heterostructure solid oxide fuel cells. Appl. Phys. Lett. 84, 2700 (2004).

    Article  CAS  Google Scholar 

  6. M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P.H. Chang, and T.J. Marks: p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. PNAS 105(8), 2783 (2007).

    Article  Google Scholar 

  7. I.M. Chan, T.Y. Hsu, and F.C. Hong: Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode. Appl. Phys. Lett. 81, 1899 (2002).

    Article  CAS  Google Scholar 

  8. T. Dutta, P. Gupta, A. Gupta, and J. Narayan: High work function (p-type NiO1+x)/Zn0.95Ga0.05O heterostructures for transparent conducting oxides. J. Phys. D: Appl. Phys. 43, 105301 (2010).

    Article  Google Scholar 

  9. T. Dutta, P. Gupta, A. Gupta, and J. Narayan: Effect of Li doping in NiO thin films on its transparent and conducting properties and its application in heteroepitaxial p-n junctions. J. Appl. Phys. 108(8), 083715 (2010).

    Article  Google Scholar 

  10. D. Alders, F.C. Voogt, T. Hibma, and G.A. Sawatzky: Interface effects in the Ni 2p x-ray photoelectron spectra of NiO thin films grown on oxide substrates. Phys. Rev. B 54(11), 7716 (1996).

    Article  CAS  Google Scholar 

  11. X. Chen, K. Ruan, G. Wu, and D. Bao: Tuning electrical properties of transparent p-NiO/n-MgZnO heterojunctions with band gap engineering of MgZnO. Appl. Phys. Lett. 93, 112112 (2008).

    Article  Google Scholar 

  12. H. Long, G.J. Fang, H.H. Huang, X.M. Mo, W. Xia, B.Z. Dong, X.Q. Meng, and X.Z. Zhao: Ultraviolet electroluminescence from ZnO/NiO-based heterojunction light-emitting diodes. Appl. Phys. Lett. 95(1), 013509 (2009).

    Article  Google Scholar 

  13. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu: Electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotechnol. 6, 506 (2011).

    Article  CAS  Google Scholar 

  14. M.P. Lu, J. Song, M.Y. Lu, M.T. Chen, Y. Gao, L.J. Chen, and Z.L. Wang: Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 9, 1223 (2009).

    Article  CAS  Google Scholar 

  15. M.T. Chen, M.P. Lu, Y.J. Wu, J. Song, C.Y. Lee, M.Y. Lu, Y.C. Chang, L.J. Chou, Z.L. Wang, and L.J. Chen: Near UV LEDs made with in situ doped p-n homojunction ZnO nanowire arrays. Nano Lett. 10, 4387 (2010).

    Article  CAS  Google Scholar 

  16. M.S. Wu and C.H. Yang: Electrochromic properties of intercrossing nickel oxide nanoflakes synthesized by electrochemically anodic deposition. Appl. Phys. Lett. 91, 033109 (2007).

    Article  Google Scholar 

  17. H.Y. Ryu, G.P. Choi, W.S. Lee, and J.S. Park: Effect of film thickness on structural and electrical properties of sputter-deposited nickel oxide films. J. Mater. Sci. Lett. 39, 4375 (2004).

    CAS  Google Scholar 

  18. M. Stamataki, D. Tsamakis, N. Brilis, I. Fasaki, A. Giannoudakos, and M. Kompitsas: Hydrogen gas sensors based on PLD grown NiO thin film structures. Phys. Status Solidi A 205, 2064 (2008).

    Article  CAS  Google Scholar 

  19. F. Reinert, P. Steiner, S. Hiifner, H. Schmitt, J. Fink, M. Knupfer, P. Sand, and P.E. Bertel: Electron and hole doping in NiO. Z. Phys. B: Condens. Matter 97, 83 (1995).

    Article  CAS  Google Scholar 

  20. P. Gupta, T. Dutta, S. Mal, and J. Narayan: Controlled p-type to n-type conductivity transformation in NiO thin films by ultraviolet-laser irradiation. J. Appl. Phys. 111, 013706 (2012).

    Article  Google Scholar 

  21. H. Sato, T. Minami, S. Takata, and T. Yamada: Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films 236, 27 (1993).

    Article  CAS  Google Scholar 

  22. B.D. Cullity: Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978), p. 102.

    Google Scholar 

  23. S. Maniv, W.D. Westwood, and E. Colombini: Pressure and angle of incidence effects in reactive planar magnetron sputtered ZnO layers. J. Vac. Sci. Technol., A 20, 162 (1982).

    Article  CAS  Google Scholar 

  24. H.L. Chen, Y.M. Lu, and W.S. Hwang: Characterization of sputtered NiO thin films. Surf. Coat. Technol. 198, 138 (2005).

    Article  CAS  Google Scholar 

  25. P. Puspharajah, S. Radhakrishna, and A.K. Aroif: Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique. J. Mater. Sci. 32, 3001 (1997).

    Article  CAS  Google Scholar 

  26. N.A. Subrahamanyam: A Textbook of Optics, 9th ed. (Brj Laboratory, India, 1977).

    Google Scholar 

  27. A. Mendoza-Galván, M.A. Vidales-Hurtado, and A.M. López-Beltrán: Comparison of the optical and structural properties of nickel oxide-based thin films obtained by chemical bath and sputtering. Thin Solid Films 517, 3115 (2009).

    Article  Google Scholar 

  28. T.S. Moss, G.J. Burrell, and B. Ellis: Semiconductor Opto-Electronics (Wiley, New York, 1973).

    Google Scholar 

  29. K. Nakahata, A. Miida, T. Kamiya, C.M. Fortmann, and I. Shimizu: Carrier transport, structure and orientation in polycrystalline silicon on glass. Thin Solid Films 337, 45 (1999).

    Article  CAS  Google Scholar 

  30. M. Cutler, J.F. Leavy, and R.L. Fitzpatrick: Electronic transport in semimetallic cerium sulfide. Phys. Rev. 133, A1143 (1964).

    Article  Google Scholar 

  31. L. Li, L. Fang, X.J. Zhou, Z.Y. Liu, L. Zhao, and S. Jiang: X-ray photoelectron spectroscopy study and thermoelectric properties of Al-doped ZnO thin films. J. Electron. Spectrosc. Relat. Phenom. 173, 7 (2009).

    Article  CAS  Google Scholar 

  32. M. Tyagi, M. Tomar, and V. Gupta: P-N junction of NiO thin film for photonic devices. IEEE Electron Device Lett 34, 1 (2013).

    Article  Google Scholar 

  33. A. Chowdhuri, S.K. Singh, K. Sreenivas, and V. Gupta: Contribution of adsorbed oxygen and interfacial space charge for enhanced response of SnO2 sensors having CuO catalyst for H2S gas. Sens. Actuators, B 145, 155 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to Department of Science and Technology, Government of India, for the financial support to carry out this research work. One of the authors (MT) is thankful to CSIR and University of Delhi for the research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyagi, M., Tomar, M. & Gupta, V. Postdeposition annealing of NiOx thin films: A transition from n-type to p-type conductivity for short wave length optoelectronic devices. Journal of Materials Research 28, 723–732 (2013). https://doi.org/10.1557/jmr.2012.443

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.443

Navigation