Skip to main content

Advertisement

Log in

Chrysanthemum like carbon nanofiber foam architectures for supercapacitors

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) chrysanthemum-like carbon nanofiber (CCNF) foam architectures were synthesized on highly porous nickel foam via a one-step ambient pressure chemical vapor deposition process by introducing a mixture of precursor gases (H2 and C2H2). The as-synthesized 3D foam architectures were characterized by scanning electron microscopy and transmission electron microscopy, which demonstrate high porosity and a densely packed nature of the hierarchical carbon nanostructures. Symmetrical electrochemical double-layer capacitors were fabricated using electrodes based on the CCNF foam architectures. Cyclic voltammetry, charge–discharge measurements, and electrochemical impedance spectroscopy were conducted to determine the performance metrics. The supercapacitors (SCs) demonstrate a high areal capacitance of 1.37 F/cm2 (gravimetric specific capacitance: 23.83 F/g), which leads to superior values for per area energy density (0.19 Wh/cm2) and power density (141.77 W/cm2). In addition, capacitance retention of ∼100% over 13,000 charge–discharge cycles demonstrates the high electrochemical stability of this type of carbon nanostructure foam for high areal capacitance SCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. P. Simon and Y. Gogotsi: Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008).

    Article  CAS  Google Scholar 

  2. Z.S. Wu, W. Ren, D.W. Wang, F. Li, B. Liu, and H.M. Cheng: High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4, 5835–5842 (2010).

    Article  CAS  Google Scholar 

  3. L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.F. Cui, and Y. Cui: Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. U.S.A 106, 21490–21494 (2009).

    Article  CAS  Google Scholar 

  4. X. Lang, A. Hirata, T. Fujita, and M. Chen: Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232–236 (2011).

    Article  CAS  Google Scholar 

  5. M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, and R.S. Ruoff: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008).

    Article  CAS  Google Scholar 

  6. M.D. Stoller and R.S. Ruoff: Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 3, 1294–1301 (2010).

    Article  CAS  Google Scholar 

  7. A.G. Pandolfo and A.F. Hollenkamp: Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006).

    Article  CAS  Google Scholar 

  8. A.P. Yu, I. Roes, A. Davies, and Z.W. Chen: Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl. Phys. Lett. 96, 253105-1–253105-3 (2010).

  9. S. Murali, D.R. Dreyer, P. Valle-Vigon, M.D. Stoller, Y. Zhu, C. Morales, A.B. Fuertes, C.W. Bielawski, and R.S. Ruoff: Mesoporous carbon capsules as electrode materials in electrochemical double layer capacitors. Phys. Chem. Chem. Phys. 13, 2652–2655 (2011).

    Article  CAS  Google Scholar 

  10. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010).

    Article  CAS  Google Scholar 

  11. J.R. McDonough, J.W. Choi, Y. Yang, F. La Mantia, Y. Zhang, and Y. Cui: Carbon nanofiber supercapacitors with large areal capacitances. Appl. Phys. Lett. 95, 243109–243109-3 (2009).

    Article  Google Scholar 

  12. W. Wang, S. Guo, M. Penchev, J. Zhong, J. Lin, D. Bao, V. Vullev, M. Ozkan, and C.S. Ozkan: Hybrid low resistance ultracapacitor electrodes based on 1-pyrenebutyric acid functionalized centimeter-scale graphene sheets. J. Nanosci. Nanotechnol. 12, 6913–6920 (2012).

    Article  CAS  Google Scholar 

  13. W. Wang, S. Guo, M. Penchev, I. Ruiz, K.N. Bozhilov, D. Yan, M. Ozkan, and C.S. Ozkan: Three dimensional few-layer graphene-carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy (2012). https://doi.org/10.1016/j.nanoen.2012.10.001.

    Google Scholar 

  14. E. Frackowiak: Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774–1785 (2007).

    Article  CAS  Google Scholar 

  15. J.S. Ye, H.F. Cui, X. Liu, T.M. Lim, W.D. Zhang, and F.S. Sheu: Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Small 1, 560–565 (2005).

    Article  CAS  Google Scholar 

  16. Z. Weng, Y. Su, D-W. Wang, F. Li, J. Du, and H-M. Cheng: Graphene–cellulose paper flexible supercapacitors. Adv. Energy Mater. 1, 917–922 (2011).

    Article  CAS  Google Scholar 

  17. J.K. Chinthaginjala, D.B. Thakur, K. Seshan, and L. Lefferts: How carbon-nano-fibers attach to Ni foam. Carbon 46, 1638–1647 (2008).

    Article  CAS  Google Scholar 

  18. X. Yan, Z. Tai, J. Chen, and Q. Xue: Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor. Nanoscale 3, 212–216 (2011).

    Article  CAS  Google Scholar 

  19. S. Talapatra, S. Kar, S.K. Pal, R. Vajtai, L. Ci, P. Victor, M.M. Shaijumon, S. Kaur, O. Nalamasu, and P.M. Ajayan: Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 1, 112–116 (2006).

    Article  CAS  Google Scholar 

  20. Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, and F. Wei: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 3723–3728 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihrimah Ozkan.

Supplementary Material

Supplementary Material

Supplementary material can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Guo, S., Ozkan, M. et al. Chrysanthemum like carbon nanofiber foam architectures for supercapacitors. Journal of Materials Research 28, 912–917 (2013). https://doi.org/10.1557/jmr.2012.412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.412

Navigation