Skip to main content
Log in

Gold nanowires with high aspect ratio and morphological purity: Synthesis, characterization, and evaluation of parameters

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, gold (Au) nanowires were synthesized with a modified hydrothermal process, and high structural purity and control over Au nanowire diameter were achieved. Parametric study was performed to examine the effect of surfactant concentration, reaction time, and temperature on the quality of the synthesized products. The optimum conditions were determined for the synthesis with two different surfactant molecules, namely hexamethylenetetramine and ethylenediaminetetraacetic acid. Au nanowires synthesized under optimum conditions have high aspect ratio (diameters in the range of 50–110 nm and lengths in micrometers) with high structural purity and are potentially useful for applications such as surface-enhanced Raman scattering spectroscopy and transparent conducting electrodes for optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Rycenga, M.H. Kim, P.H.C Camargo, C. Cobley, Z.Y. Li, and Y. Xia: Surface-enhanced Raman scattering: Comparison of three different molecules on single-crystal nanocubes and nanospheres of silver. J. Phys. Chem. A 113, 3932 (2009).

    CAS  Google Scholar 

  2. Z.Q. Tian, B. Ren, and D.Y. Wu: Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 106, 9463 (2002).

    CAS  Google Scholar 

  3. S. Eustis and M.A. El-Sayed: Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209 (2006).

    CAS  Google Scholar 

  4. G. Rupprechter: Catalysis by noble metal nanoparticles supported on thin-oxide films, in Model Systems in Catalysis, edited by R. Rioux (Springer-Verlag, New York, 2010), p. 319.

    Google Scholar 

  5. X. Huang, P.K. Jain, I.H. El-Sayed, and M.A. El-Sayed: Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2, 681 (2007).

    CAS  Google Scholar 

  6. Z. Liu and P.C. Searson: Single nanoporous gold nanowire sensors. J. Phys. Chem. B 110, 4318 (2006).

    CAS  Google Scholar 

  7. U. Yogeswaran and S.M. Chen: A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8, 290 (2008).

    CAS  Google Scholar 

  8. J.Y. Lee, S.T. Connor, Y. Cui, and P. Peumans: Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689 (2008).

    CAS  Google Scholar 

  9. A. Nadarajah, R.C. Word, J. Meiss, and R. Konenkamp: Flexible inorganic nanowire light-emitting diode. Nano Lett. 8, 534 (2008).

    CAS  Google Scholar 

  10. M.C. Rosamond, A.J. Gallant, J.J. Atherton, M.C. Petty, O. Kolosov, and D.A. Zeze: Transparent gold nanowire electrodes, in 11th IEEE Conference on Nanotechnology (IEEE-NANO), August 15–18, 2011, p. 604.

    Google Scholar 

  11. S. Coskun, B. Aksoy, and H.E. Unalan: Polyol synthesis of silver nanowires: An extensive parametric study. Cryst. Growth Des. 11, 4963 (2011).

    CAS  Google Scholar 

  12. M. Mazur: Electrochemically prepared silver nanoflakes and nanowires. Electrochem. Commun. 6, 400 (2004).

    CAS  Google Scholar 

  13. J. Xu, J. Hu, C. Peng, H. Liu, and Y. Hu: A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant. J. Colloid Interface Sci. 298, 689 (2006).

    CAS  Google Scholar 

  14. K. Zou, X.H. Zhang, X.F. Duan, X.M. Meng, and S.K. Wu: Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation. J. Cryst. Growth 273, 285 (2004).

    CAS  Google Scholar 

  15. S. Berchmans, R.G. Nirmal, G. Prabaharan, S. Madhu, and V. Yegnaraman: Templated synthesis of silver nanowires based on the layer-by-layer assembly of silver with dithiodipropionic acid molecules as spacers. J. Colloid Interface Sci. 303, 604 (2006).

    CAS  Google Scholar 

  16. A. Halder and N. Ravishankar: Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv. Mater. 19, 1854 (2007).

    CAS  Google Scholar 

  17. P. Forrer, F. Schlottig, H. Siegenthaler, and M. Textor: Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique. J. Appl. Electrochem. 30, 533 (2000).

    CAS  Google Scholar 

  18. N. Pazos-Perez, D. Baranov, S. Irsen, M. Hilgendorff, L.M. Liz-Marzan, and M. Giersig: Synthesis of flexible, ultrathin gold nanowires in organic media. Langmuir 24, 9855 (2008).

    CAS  Google Scholar 

  19. M. Tsuji, M. Hashimoto, Y. Nishizawa, and T. Tsuji: Synthesis of gold nanorods and nanowires by a microwave–polyol method. Mater. Lett. 58, 2326 (2004).

    CAS  Google Scholar 

  20. F. Kim, K. Sohn, J. Wu, and J. Huang: Chemical synthesis of gold nanowires in acidic solutions. J. Am. Chem. Soc. 130, 14442 (2008).

    CAS  Google Scholar 

  21. J.U. Kim, S.H. Cha, K. Shin, J.Y. Jho, and J.C. Lee: Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions. Adv. Mater. 16, 459 (2004).

    CAS  Google Scholar 

  22. J. Liu, J.L. Duan, E. Toimil-Molares, S. Karim, T.W. Cornelius, D. Dobrev, H.J. Yao, Y.M. Sun, M.D. Hou, D. Mo, Z.G. Wang, and R. Neumann: Electrochemical fabrication of single-crystalline and polycrystalline Au nanowires: The influence of deposition parameters. Nanotechnology 17, 1922 (2006).

    CAS  Google Scholar 

  23. J.L. Gu, J.L. Shi, L.M. Xiong, H.R. Chen, L. Li, and M.L. Ruan: A new strategy to incorporate high density gold nanowires into the channels of mesoporous silica thin films by electroless deposition. Solid State Sci. 6, 747 (2004).

    CAS  Google Scholar 

  24. F. Patolsky, Y. Weizmann, O. Lioubashevski, and I. Willner: Au-nanoparticle nanowires based on DNA and polylysine templates. Angew. Chem. Int. Ed. Engl. 41, 2323 (2002).

    CAS  Google Scholar 

  25. J. Pérez‐Juste, L. Liz‐Marzán, S. Carnie, D.Y.C Chan, and P. Mulvaney: Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv. Funct. Mater. 14, 571 (2004).

    Google Scholar 

  26. K. Esumi, K. Matsuhisa, and K. Torigoe: Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template. Langmuir 11, 3285 (1995).

    CAS  Google Scholar 

  27. Y.J. Kim and J.H. Song: Practical synthesis of Au nanowires via a simple photochemical route. Bull. Korean Chem. Soc. 27, 633 (2006).

    CAS  Google Scholar 

  28. N.R. Jana, L. Gearheart, and C.J. Murphy: Wet chemical synthesis high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105, 4065 (2001).

    CAS  Google Scholar 

  29. A.K. Sinha, M. Basu, S. Sarkar, M. Pradhan, and T. Pal: Electrostatic field force directed gold nanowires from anion exchange resin. Langmuir 26, 17419 (2010).

    CAS  Google Scholar 

  30. M.C. Akgun, Y.E. Kalay, and H.E. Unalan: Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt. J. Mater. Res. 27, 1445 (2012).

    CAS  Google Scholar 

  31. Z.L. Wang: ZnO nanowire and nanobelt platform for nanotechnology. Mat. Sci. Eng., R. 64, 33 (2009).

    Google Scholar 

  32. A.A. Ismail, A. El-Midany, E.A. Abdel-Aal, and H. El-Shall: Application of statistical design to optimize the preparation of ZnO nanoparticles via hydrothermal technique. Mater. Lett. 59, 1924 (2005).

    CAS  Google Scholar 

  33. S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, and H.J. Sung: Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 11, 666 (2011).

    CAS  Google Scholar 

  34. R. Savu, R. Parra, E. Joanni, B. Jancar, S.A. Eliziario, R. de Camargo, P.R. Bueno, J.A. Varela, E. Longo, and M.A. Zaghete: The effect of cooling rate during hydrothermal synthesis of ZnO nanorods. J. Cryst. Growth 311, 4102 (2009).

    CAS  Google Scholar 

  35. J. Hu, F. Li, K. Wang, D. Han, Q. Zhang, J. Yuan, and L. Niu: One-step synthesis of graphene–AuNPs by HMTA and the electrocatalytical application for O2 and H2O2. Talanta 93, 345 (2012).

    CAS  Google Scholar 

  36. A. Ali Umar and M. Oyama: High-yield synthesis of tetrahedral-like gold nanotripods using an aqueous binary mixture of cetyltrimethylammonium bromide and hexamethylenetetramine. Cryst. Growth Des. 9, 1146 (2008).

    Google Scholar 

  37. R.L. Whetten, J.T. Khoury, M.M. Alvarez, S. Murthy, I. Vezmar, Z. Wang, P.W. Stephens, C.L. Cleveland, W. Luedtke, and U. Landman: Nanocrystal gold molecules. Adv. Mater. 8, 428 (1996).

    CAS  Google Scholar 

  38. C.H. Kuo and M.H. Huang: Synthesis of branched gold nanocrystals by a seeding growth approach. Langmuir 21, 2012 (2005).

    CAS  Google Scholar 

  39. X.Y. Zhang, L.D. Zhang, Y. Lei, L.X. Zhao, and Y.Q. Mao: Fabrication and characterization of highly ordered Au nanowire arrays. J. Mater. Chem. 11, 1732 (2001).

    CAS  Google Scholar 

  40. C.L. Li, Y. Su, X.Y. Lv, H.L. Xia, and Y.J. Wang: Electrochemical acetylene sensor based Au/MWCNTs. Sens. Actuators, B 149, 427 (2010).

    CAS  Google Scholar 

  41. H.T. Zhang, J. Ding, G.M. Chow, M. Ran, and J.B. Yi: Engineering magnetic properties of Ni nanoparticles by non-magnetic cores. Chem. Mater. 21, 5222 (2009).

    CAS  Google Scholar 

  42. G. Lü, D. Ji, G. Qian, Y. Qi, X. Wang, and J. Suo: Gold nanoparticles mesoporous materials showing catalytic selective oxidation cyclohexane using oxygen. Appl. Catal., A 280, 175 (2005).

    Google Scholar 

  43. J. Xiao and L. Qi: Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale 3, 1383 (2011).

    CAS  Google Scholar 

  44. C. Burda, X. Chen, R. Narayanan, and M.A. El-Sayed: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025 (2005).

    CAS  Google Scholar 

  45. L.H. Pei, K. Mori, and M. Adachi: Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4 and the shape stabilization. Langmuir 20, 7837 (2004).

    CAS  Google Scholar 

  46. P. Knauth and J. Schoonman: Nanostructured Materials: Selected Synthesis Methods, Properties, and Applications (Kluwer Academic Pub, Norwell, MA, 2002).

    Google Scholar 

Download references

Acknowledgments

We thank Assistant Professor Dr. H. Emrah Unalan and Assistant Professor Dr. Eren Kalay for helpful discussions. We also acknowledge the support from METU-BAP Project No. 07-02-2012-101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emren Nalbant Esenturk.

Supplementary Material

Supplementary Material

Supplementary material can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dertli, E., Coskun, S. & Esenturk, E.N. Gold nanowires with high aspect ratio and morphological purity: Synthesis, characterization, and evaluation of parameters. Journal of Materials Research 28, 250–260 (2013). https://doi.org/10.1557/jmr.2012.407

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.407

Navigation