Skip to main content

Advertisement

Log in

Formation and thermal stability of 2D ordered SiC/Si(001) nanodots

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Precise spatial ordering of quantum dots (QDs) may enable predictable quantum states due to direct exchange interactions of confined carriers. The realization of predictable quantum states may lead to unique functionalities such as spin cluster qubits and spintronic band gap systems. To define exemplary quantum architectures, one must develop control over QD size and spatial arrangement on the sub-35-nm length scale. We use fine-probe electron beam irradiation to locally decompose ambient hydrocarbons onto a bare Si(001) surface. These carbonaceous patterns are annealed in ultrahigh vacuum (UHV), forming ordered arrays of nanoscale SiC QDs. We have achieved sub-10-nm diameter epitaxially oriented 3C-SiC nanodots with interdot spacings down to 22.5 nm. We investigate the templated feature evolution during UHV annealing and subsequent Ge epitaxial overgrowth to identify key mechanisms that must be controlled to preserve pattern fidelity and reduce broadening of the nanodot distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Meier, J. Levy, and D. Loss: Quantum computing with spin cluster qubits. Phys. Rev. Lett. 90, 047901 (2003).

    Article  Google Scholar 

  2. F. Meier, J. Levy, and D. Loss: Quantum computing with antiferromagnetic spin clusters. Phys. Rev. B 68, 134417 (2003).

    Article  Google Scholar 

  3. C.E. Pryor, M.E. Flatté, and J. Levy: Electrical manipulation of an electronic two-state system in Ge quantum dots. Appl. Phys. Lett. 95, 232103 (2009).

    Article  Google Scholar 

  4. O. Guise, H. Marbach, J. Levy, J. Ahner, and J.T. Yates Jr.: Electron-beam-induced deposition of carbon films on Si(1 0 0) using chemisorbed ethylene as a precursor molecule. Surf. Sci. 571, 128–138 (2004).

    Article  CAS  Google Scholar 

  5. O. Guise, J. Ahner, J. Yates, and J. Levy: Formation and thermal stability of sub-10-nm carbon templates on Si(100). Appl. Phys. Lett. 85, 2352–2354 (2004).

    Article  CAS  Google Scholar 

  6. O. Guise: Patterning of sub-10-nm Ge islands on Si(100) by directed self-assembly. Appl. Phys. Lett. 87, 171902 (2005).

    Article  Google Scholar 

  7. C.W. Petz, D. Yang, J. Levy, and J.A. Floro: Structure of Si-capped Ge/SiC/Si (001) epitaxial nanodots: Implications for quantum dot patterning. Appl. Phys. Lett. 100, 141603 (2012).

    Article  Google Scholar 

  8. G. Katsaros: Investigating the lateral motion of SiGe islands by selective chemical etching. Surf. Sci. 600, 2608–2613 (2006).

    Article  CAS  Google Scholar 

  9. T. Merdzhanova, A. Rastelli, M. Stoffel, S. Kiravittaya, and O.G. Schmidt: Island motion triggered by the growth of strain-relaxed SiGe/Si(0 0 1) islands. J. Crystal Growth 301–302, 319–323 (2007).

    Article  Google Scholar 

  10. H.U. Danzebrink, L. Koenders, G. Wilkening, A. Yacoot, and H. Kunzmann: Advances in scanning force microscopy for dimensional metrology. CIRP Ann. Manuf. Sci. Technol. 55, 841–878 (2006).

    Article  Google Scholar 

  11. C.K. Chung and B.H. Wu: Effect of substrate temperature on the in-situ formation of crystalline SiC nanostructured film using ultra-high-vacuum ion beam sputtering. J. Nanosci. Nanotechnol. 10, 4679–4683 (2010).

    Article  CAS  Google Scholar 

  12. C.K. Chung and B.H. Wu: Thermally induced formation of SiC nanoparticles from Si/C/Si multilayers deposited by ultra-high-vacuum ion beam sputtering. Nanotechnology 17, 3129–3133 (2006).

    Article  CAS  Google Scholar 

  13. M. Krishnamurthy, J.S. Drucker, and A. Challa: Epitaxial growth and characterization of Ge1−xCx alloys on Si(100). J. Appl. Phys. 78, 7070 (1995).

    Article  CAS  Google Scholar 

  14. C.J. Palmstrom: Epitaxy of dissimilar materials. Annu. Rev. Mater. Sci. 25, 389–415 (1995).

    Article  Google Scholar 

  15. A. Trampert: Heteroepitaxy of dissimilar materials: Effect of interface structure on strain and defect formation. Physica E 13, 1119–1125 (2002).

    Article  CAS  Google Scholar 

  16. J.A. Floro, J.R. Michael, L.N. Brewer, and J.W.P Hsu: Preferred heteroepitaxial orientations of ZnO nanorods on Ag. J. Mater. Res. 25, 1352–1361 (2010).

    Article  CAS  Google Scholar 

  17. D. Yang, C.W. Petz, and J.A. Floro, and J. Levy: Unpublished.

Download references

Acknowledgments

Support from the U.S. Department of Energy Office of Basic Energy Sciences is gratefully acknowledged under Grant No. DE-FG02-07ER46421.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher W. Petz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petz, C.W., Yang, D., Levy, J. et al. Formation and thermal stability of 2D ordered SiC/Si(001) nanodots. Journal of Materials Research 28, 261–267 (2013). https://doi.org/10.1557/jmr.2012.406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.406

Navigation