Skip to main content
Log in

Review: Micro- and nanostructured surface engineering for biomedical applications

  • Invited Feature Paper
  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The engineering of well-defined micro- and nanoscaled surface topographies on biomedical metals and polymeric materials has been explored as a strategy to control biological responses. In this review, the ability of surface features engineered by a variety of methods to promote or reduce protein, blood, and bacterial adhesion is discussed independent of surface chemistry. The interaction of proteins with surface topography is fundamentally important and influences the conformation, the types of protein, as well as the overall amount of protein adhesion, which in many instances is increased over the associated increase in surface area. The use of superhydrophobic surface features is discussed as a manner to engineer antifouling surfaces with protein, blood, and bacterial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table I
Table II

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. V.A. Schulte, M. Diez, M. Moller, and M.C. Lensen: Topography-induced cell adhesion to Acr-sP(EO-stat-PO) hydrogels: The role of protein adsorption. Macromol. Biosci. 11, 1378–1386 (2011).

    CAS  Google Scholar 

  2. C. Ota-Tsuzuki, C.E. Datte, K.A. Nomura, L.A.G Cardoso, and J.A. Shibli: Influence of titanium surface treatments on formation of the blood clot extension. J. Oral Implantol. 37, 641–647 (2011).

    Google Scholar 

  3. S. Cei, A. Legitimo, S. Barachini, R. Consolini, G. Sammartino, L. Mattii, M. Gabriele, and F. Graziani: Effect of laser micromachining of titanium on viability and responsiveness of osteoblast-like cells. Implant Dentistry 20, 285–291 (2011).

    Google Scholar 

  4. E. Orsini, S. Salgarello, D. Martini, B. Bacchelli, M. Quaranta, L. Pisoni, E. Bellei, M. Joechler, and V. Ottani: Early healing events around titanium implant devices with different surface microtopography: A pilot study in an in vivo rabbit model. Scientific World J. 2012, 349842 (2012).

    Google Scholar 

  5. F. Chai, A. Ochsenbein, M. Traisnel, R. Busch, J. Breme, and H.F. Hildebrand: Improving endothelial cell adhesion and proliferation on titanium by sol-gel derived oxide coating. J. Biomed. Mater. Res. Part A 92(2), 754–765 (2010).

    Google Scholar 

  6. P.W. Kammerer, M. Gabriel, B. Al-Nawas, T. Scholz, C.M. Kirchmaier, and M.O. Klein: Early implant healing: promotion of platelet activation and cytokine release by topographical, chemical and biomimetical titanium surface modifications in vitro. Clin. Oral Implants Res. 23, 504–510 (2012).

    CAS  Google Scholar 

  7. C.M. Stanford: Surface modification of biomedical and dental implants and the processes of inflammation, wound healing and bone formation. Int. J. Mol. Sci. 11, 354–369 (2010).

    CAS  Google Scholar 

  8. L. Le Guehennec, A. Soueidan, P. Layrolle, and Y. Amouriq: Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23, 844–854 (2007).

    Google Scholar 

  9. D. Khang, J. Lu, C. Yao, K.M. Haberstroh, and T.J. Webster: The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 29(8), 970–983 (2008).

    CAS  Google Scholar 

  10. B.S. Kim and I.S. Kim: Recent nanofiber technologies. Polym. Rev. 51, 235–238 (2011).

    CAS  Google Scholar 

  11. W.L. Song, D.D. Veiga, C.A. Custodio, and J.F. Mano: Bioinspired degradable substrates with extreme wettability properties. Adv. Mater. 21, 1830 (2009).

    CAS  Google Scholar 

  12. C. Minelli, A. Kikuta, N. Tsud, M.D. Ball, and A. Yamamoto: A micro-fluidic study of whole blood behaviour on PMMA topographical nanostructures. J. Nanobiotechnol. 6, 3 (2008).

    Google Scholar 

  13. B.O. Leung, A.P. Hitchcock, J.L. Brash, A. Scholl, and A. Doran: Phase segregation in polystyrene-polylactide blends. Macromolecules 42, 1679–1684 (2009).

    CAS  Google Scholar 

  14. S.R. Schricker, M.L.B Palacio, and B. Bhushan: Antibody sensed protein surface conformation. Mater. Today 14, 616–621 (2011).

    CAS  Google Scholar 

  15. B.O. Leung, A.P. Hitchcock, R. Cornelius, J.L. Brash, A. Scholl, and A. Doran: X-ray spectromicroscopy study of protein adsorption to a polystyrene-polylactide blend. Biomacromolecules 10, 1838–1845 (2009).

    CAS  Google Scholar 

  16. J.Y. Shiu and P. Chen: Addressable protein patterning via switchable superhydrophobic microarrays. Adv. Funct. Mater. 17, 2680–2686 (2007).

    CAS  Google Scholar 

  17. K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides, and C. Cardinaud: Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: From stable super hydrophilic to super hydrophobic surfaces. Langmuir 25, 11748–11759 (2009).

    CAS  Google Scholar 

  18. F.X. Zhang and H.Y. Low: Ordered three-dimensional hierarchical nanostructures by nanoimprint lithography. Nanotechnology 17, 1884–1890 (2006).

    Google Scholar 

  19. J.Y. Shiu, C.W. Kuo, W.T. Whang, and P.L. Chen: Observation of enhanced cell adhesion and transfection efficiency on superhydrophobic surfaces. Lab. A Chip 10, 556–558 (2010).

    CAS  Google Scholar 

  20. H. Schift: Nanoimprint lithography: An old story in modern times? A review. J. Vac. Sci. Technol., B 26, 458–480 (2008).

    CAS  Google Scholar 

  21. P. Roach, D. Farrar, and C.C. Perry: Interpretation of protein adsorption: Surface-induced conformational changes. J. Am. Chem. Soc. 127, 8168–8173 (2005).

    CAS  Google Scholar 

  22. L. Dong, T. Nypelo, M. Osterberg, J. Laine, and M. Alava: Modifying the wettability of surfaces by nanoparticles: Experiments and modeling using the Wenzel law. Langmuir 26, 14563–14566 (2010).

    CAS  Google Scholar 

  23. L.B. Koh, I. Rodriguez, and S.S. Venkatraman: The effect of topography of polymer surfaces on platelet adhesion. Biomaterials 31, 1533–1545 (2010).

    CAS  Google Scholar 

  24. Y. Koc, A.J. de Mello, G. McHale, M.I. Newton, P. Roach, and N.J. Shirtcliffe: Nano-scale superhydrophobicity: Suppression of protein adsorption and promotion of flow-induced detachment. Lab. A Chip 8, 582–586 (2008).

    CAS  Google Scholar 

  25. J. Zheng, W. Song, H. Huang, and H. Chen: Protein adsorption and cell adhesion on polyurethane/Pluronic surface with lotus leaf-like topography. Colloids Surf., B 77(2), 234–239 (2010).

    CAS  Google Scholar 

  26. R.C.C Wang, M.C. Hsieh, and T.M. Lee: Effects of nanometric roughness on surface properties and fibroblast’s initial cytocompatibilities of Ti6Al4V. Biointerphases 6, 87–97 (2011).

    CAS  Google Scholar 

  27. K.S. Brammer, C. Choi, C.J. Frandsen, S. Oh, and S. Jin: Hydrophobic nanopillars initiate mesenchymal stem cell aggregation and osteo-differentiation. Acta Biomater. 7, 683–690 (2011).

    CAS  Google Scholar 

  28. J. Shi, C. Peroz, D. Peyrade, J. Salari, M. Belotti, W.H. Huang, and Y. Chen: Tri-layer soft UV imprint lithography and fabrication of high density pillars. Microelectron. Eng. 83, 1664–1668 (2006).

    CAS  Google Scholar 

  29. C.C. Liu: Rapid fabrication of microfluidic chip with three-dimensional structures using natural lotus leaf template. Microfluid. Nanofluid. 9, 923–931 (2010).

    CAS  Google Scholar 

  30. H. Chen, W. Song, F. Zhou, Z.K. Wu, H. Huang, J.H. Zhang, Q. Lin, and B. Yang: The effect of surface microtopography of poly(dimethylsiloxane) on protein adsorption, platelet and cell adhesion. Colloids Surf., B 71, 275–281 (2009).

    CAS  Google Scholar 

  31. M.N. Sela, L. Badihi, G. Rosen, D. Steinberg, and D. Kohavi: Adsorption of human plasma proteins to modified titanium surfaces. Clin. Oral Implants Res. 18, 630–638 (2007).

    Google Scholar 

  32. P.E. Scopelliti, A. Borgonovo, M. Indrieri, L. Giorgetti, G. Bongiorno, R. Carbone, A. Podesta, and P. Milani: The effect of surface nanometre-scale morphology on protein adsorption. PLoS One 5(7), e11862 (2010).

    Google Scholar 

  33. M. Riedel, B. Muller, and E. Wintermantel: Protein adsorption and monocyte activation on germanium nanopyramids. Biomaterials 22, 2307–2316 (2001).

    CAS  Google Scholar 

  34. K. Rechendorff, M.B. Hovgaard, M. Foss, V.P. Zhdanov, and F. Besenbacher: Enhancement of protein adsorption induced by surface roughness. Langmuir 22, 10885–10888 (2006).

    CAS  Google Scholar 

  35. P. Elter, R. Lange, and U. Beck: Atomic force microscopy studies of the influence of convex and concave nanostructures on the adsorption of fibronectin. Colloids Surf., B 89, 139–146 (2012).

    CAS  Google Scholar 

  36. C. Gonzalez-Garcia, S.R. Sousa, D. Moratal, P. Rico, and M. Salmeron-Sanchez: Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids Surf., B 77(2), 181–190 (2010).

    CAS  Google Scholar 

  37. P. Elter, R. Lange, and U. Beck: Electrostatic and dispersion interactions during protein adsorption on topographic nanostructures. Langmuir 27, 8767–8775 (2011).

    CAS  Google Scholar 

  38. G.P. Rockwell, L.B. Lohstreter, and J.R. Dahn: Fibrinogen and albumin adsorption on titanium nanoroughness gradients. Colloids Surf., B 91, 90–96 (2012).

    CAS  Google Scholar 

  39. Y. Huang, X.Y. Lue, J.W. Ma, and N. Huang: In vitro investigation of protein adsorption and platelet adhesion on inorganic biomaterial surfaces. Appl. Surf. Sci. 255, 257–259 (2008).

    CAS  Google Scholar 

  40. S.S. Jedlicka, J.L. McKenzie, S.J. Leavesley, K.M. Little, T.J. Webster, J.P. Robinson, D.E. Nivens, and J.L. Rickus: Sol-gel derived materials as substrates for neuronal differentiation: Effects of surface features and protein conformation. J. Mater. Chem. 16, 3221–3230 (2006).

    CAS  Google Scholar 

  41. M.S. Lord, B.G. Cousins, P.J. Doherty, J.M. Whitelock, A. Simmons, R.L. Williams, and B.K. Milthorpe: The effect of silica nanoparticulate coatings on serum protein adsorption and cellular response. Biomaterials 27, 4856–4862 (2006).

    CAS  Google Scholar 

  42. P. Roach, D. Farrar, and C.C. Perry: Surface tailoring for controlled protein adsorption: Effect of topography at the nanometer scale and chemistry. J. Am. Chem. Soc. 128, 3939–3945 (2006).

    CAS  Google Scholar 

  43. N. Penttinen, M. Silvennoinen, S. Hason, and R. Silvennoinen: Directional sensing of protein adsorption on titanium with a light-induced periodic structure. J. Phys. Chem. C 115, 12951–12959 (2011).

    CAS  Google Scholar 

  44. B.G. Keselowsky, D.M. Collard, and A.J. Garcia: Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res. Part A 66(2), 247–259 (2003).

    Google Scholar 

  45. K.E. Michael, V.N. Vernekar, B.G. Keselowsky, J.C. Meredith, R.A. Latour, and A.J. Garcia: Adsorption-induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir 19, 8033–8040 (2003).

    CAS  Google Scholar 

  46. F.A. Denis, P. Hanarp, D.S. Sutherland, J. Gold, C. Mustin, P.G. Rouxhet, and Y.F. Dufrene: Protein adsorption on model surfaces with controlled nanotopography and chemistry. Langmuir 18, 819–828 (2002).

    CAS  Google Scholar 

  47. A.S. Brydone, M.J. Dalby, C.C. Berry, R.M. Dominic Meek, and L.E. McNamara: Grooved surface topography alters matrix-metalloproteinase production by human fibroblasts. Biomed. Mater. 6(3), 035005 (2011).

    Google Scholar 

  48. N. Ferraz, J. Carlsson, J. Hong, and M.K. Ott: Influence of nanoporesize on platelet adhesion and activation. J. Mater. Sci. - Mater. Med. 19, 3115–3121 (2008).

    CAS  Google Scholar 

  49. K.R. Milner, A.J. Snyder, and C.A. Siedlecki: Development of novel submicron textured polyether(urethane urea) for decreasing platelet adhesion. Asaio J. 51(5), 578–584 (2005).

    CAS  Google Scholar 

  50. M. Zhou, J.H. Yang, X. Ye, A.R. Zheng, G. Li, P.F. Yang, Y. Zhu, and L. Cai: Blood platelet’s behavior on nanostructured superhydrophobic surface. J. Nano Res. 2, 129–136 (2008).

    CAS  Google Scholar 

  51. X. Ye, Y.L. Shao, M. Zhou, J. Li, and L. Cai: Research on micro-structure and hemo-compatibility of the artificial heart valve surface. Appl. Surf. Sci. 255, 6686–6690 (2009).

    CAS  Google Scholar 

  52. T.L. Sun, H. Tan, D. Han, Q. Fu, and L. Jiang: No platelet can adhere - largely improved blood compatibility on nanostructured superhydrophobic surfaces. Small 1, 959–963 (2005).

    CAS  Google Scholar 

  53. K.R. Milner, A.J. Snyder, and C.A. Siedlecki: Sub-micron texturing for reducing platelet adhesion to polyurethane biomaterials. J. Biomed. Mater. Res. Part A 76A, 561–570 (2006).

    CAS  Google Scholar 

  54. L. Kikuchi, J.Y. Park, C. Victor, and J.E. Davies: Platelet interactions with calcium-phosphate-coated surfaces. Biomaterials 26(26) 5285–5295 (2005).

    CAS  Google Scholar 

  55. X.M. Hou, X.B. Wang, Q.S. Zhu, J.C. Bao, C. Mao, L.C. Jiang, and J.A. Shen: Preparation of polypropylene superhydrophobic surface and its blood compatibility. Colloids Surf., B 80, 247–250 (2010).

    CAS  Google Scholar 

  56. C. Minelli, A. Yamamoto, and M.J. Kim: Optically patternable polymer films as model interfaces to study cellular behaviour on topographically structured materials. J. Biomater. Sci., Polym. Ed. 22, 577–588 (2011).

    CAS  Google Scholar 

  57. J.Y. Park and J.E. Davies: Red blood cell and platelet interactions with titanium implant surfaces. Clin. Oral Implants Res. 11, 530–539 (2000).

    CAS  Google Scholar 

  58. J.Y. Park, C.H. Gemmell, and J.E. Davies: Platelet interactions with titanium: modulation of platelet activity by surface topography. Biomaterials 22, 2671–2682 (2001).

    CAS  Google Scholar 

  59. L. Rizzello, B. Sorce, S. Sabella, G. Vecchio, A. Galeone, V. Brunetti, R. Cingolani, and P.P. Pompa: Impact of nanoscale topography on genomics and proteomics of adherent bacteria. ACS Nano 5, 1865–1876 (2011).

    CAS  Google Scholar 

  60. A.Z. Komaromy, S.Y. Li, H.L. Zhang, D.V. Nicolau, R.I. Boysen, and M.T.W Hearn: Arrays of nano-structured surfaces to probe the adhesion and viability of bacteria. Microelectron. Eng. 91, 39–43 (2012).

    CAS  Google Scholar 

  61. V.K. Truong, R. Lapovok, Y.S. Estrin, S. Rundell, J.Y. Wang, C.J. Fluke, R.J. Crawford, and E.R. Ivanova: The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 31, 3674–3683 (2010).

    CAS  Google Scholar 

  62. E.P. Ivanova, V.K. Truong, H.K. Webb, V.A. Baulin, J.Y. Wang, N. Mohammodi, F. Wang, C. Fluke, and R.J. Crawford: Differential attraction and repulsion of Staphylococcus aureus and Pseudomonas aeruginosa on molecularly smooth titanium films. Scientific Rep. 1, 165 (2011).

    Google Scholar 

  63. C.R. Crick, S. Ismail, J. Pratten, and I.P. Parkin: An investigation into bacterial attachment to an elastomeric superhydrophobic surface prepared via aerosol assisted deposition. Thin Solid Films 519, 3722–3727 (2011).

    CAS  Google Scholar 

  64. K.K. Chung, J.F. Schumacher, E.M. Sampson, R.A. Burne, P.J. Antonelli, and A.B. Brennana: Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases 2, 89–94 (2007).

    CAS  Google Scholar 

  65. K.A. Whitehead, J. Colligon, and J. Verran: Retention of microbial cells in substratum surface features of micrometer and sub-micrometer dimensions. Colloids Surf., B 41, 129–138 (2005).

    CAS  Google Scholar 

  66. P.J. Eginton, H. Gibson, J. Holah, P.S. Handley, and P. Gilbert: The influence of substratum properties on the attachment of bacterial-cells. Colloids Surf., B 5, 153–159 (1995).

    CAS  Google Scholar 

  67. K.A. Whitehead, D. Rogers, J. Colligon, C. Wright, and J. Verran: Use of the atomic force microscope to determine the effect of substratum surface topography on the ease of bacterial removal. Colloids Surf., B 51, 44–53 (2006).

    CAS  Google Scholar 

  68. S.D. Puckett, E. Taylor, T. Raimondo, and T.J. Webster: The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31, 706–713 (2010).

    CAS  Google Scholar 

  69. R.L. Taylor, J. Verran, G.C. Lees, and A.J.P Ward: The influence of substratum topography on bacterial adhesion to polymethyl methacrylate. J. Mater. Sci. - Mater. Med. 9, 17–22 (1998).

    CAS  Google Scholar 

  70. P. Teixeira, A.C. Trindade, M.H. Godinho, J. Azeredo, R. Oliveira, and J.G. Fonseca: Staphylococcus epidermidis adhesion on modified urea/urethane elastomers. J. Biomater. Sci., Polym. Ed. 17(1–2), 239–246 (2006).

    CAS  Google Scholar 

  71. E.P. Ivanova, V.K. Truong, J.Y. Wang, C.C. Berndt, R.T. Jones, I.I. Yusuf, I. Peake, H.W. Schmidt, C. Fluke, D. Barnes, and R.J. Crawford: Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. Langmuir 26, 1973–1982 (2010).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Luong-Van.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luong-Van, E., Rodriguez, I., Low, H.Y. et al. Review: Micro- and nanostructured surface engineering for biomedical applications. Journal of Materials Research 28, 165–174 (2013). https://doi.org/10.1557/jmr.2012.398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.398

Navigation