Skip to main content
Log in

Ultrafine grain effect on pearlitic transformation in hypereutectoid steel

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Pearlitic transformation in an ultrafine-grained (UFG) hypereutectoid steel was investigated. The steel was a plain carbon steel containing 1.0 wt% C and very few other elements. The UFG samples were prepared by thermomechanical treatment, and an average grain size of approximately 1 μm was achieved. The pearlitic transformation was conducted by heating the UFG samples at 1023 K for different times and then cooling in air. A new pearlitic transformation phenomenon was observed: traditional lamellar pearlite can be observed only when the grain size increases to a dimension larger than approximately 4 μm, which is a critical value. When grain size is smaller than this value, the pearlitic transformation occurs in the form of divorced eutectoid, and the microstructure is the ferrite matrix with granular cementite. This research indicates that grain size has a great influence on pearlitic transformation by shortening the diffusion distance and increasing the diffusion rate of carbon atoms in the UFG steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
TABLE I.
FIG. 9.
FIG. 10.
FIG. 11.

Similar content being viewed by others

References

  1. Y. Ivanisenko, I. MacLaren, X. Sauvage, R.Z. Valiev, and H.J. Fecht: Shear-induced α → γ transformation in nanoscale Fe–C composite. Acta Mater. 54(6), 1659 (2006).

    Article  CAS  Google Scholar 

  2. H. Kitahara, N. Tsuji, and Y. Minamino: Martensite transformation from ultrafine grained austenite in Fe–28.5 at.% Ni. Mater. Sci. Eng., A. 438–440, 233 (2006).

    Article  Google Scholar 

  3. T. Waitz and H.P. Karnthaler: Martensitic transformation of NiTi nanocrystals embedded in an amorphous matrix. Acta Mater. 52(19), 5461 (2004).

    Article  CAS  Google Scholar 

  4. Y.B. Wang, Y.H. Zhao, Q. Lian, X.Z. Liao, R.Z. Valiev, S.P. Ringer, Y.T. Zhu, and E.J. Lavernia: Grain size and reversible beta-to-omega phase transformation in a Ti alloy. Scr. Mater. 63(6), 613 (2010).

    Article  CAS  Google Scholar 

  5. S. Ohsaki, K. Hono, H. Hidaka, and S. Takaki: Characterization of nanocrystalline ferrite produced by mechanical milling of pearlitic steel. Scr. Mater. 52(4), 271 (2005).

    Article  CAS  Google Scholar 

  6. Y.N. Liu, T. He, G.J. Peng, and F.L. Lian: Pearlitic transformations in an ultrafine-grained hypereutectoid steel. Metall. Mater. Trans. A. 42(8), 2144 (2011).

    Article  CAS  Google Scholar 

  7. S. Rajasekhara and P.J. Ferreira: Martensite → austenite phase transformation kinetics in an ultrafine-grained metastable austenitic stainless steel. Acta Mater. 59(2), 738 (2011).

    Article  CAS  Google Scholar 

  8. A. Böhner, T. Niendorf, D. Amberger, H.W. Höppel, M. Göken, and H.J. Maier: Martensitic transformation in ultrafine-grained stainless steel AISI 304L under monotonic and cyclic loading. Metals 2(1), 56 (2012).

    Article  Google Scholar 

  9. T. Waitz, V. Kazykhanov, and H.P. Karnthaler: Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 52(1), 137 (2004).

    Article  CAS  Google Scholar 

  10. R. Song, D. Ponge, D. Raabe, and R. Kaspar: Microstructure and crystallographic texture of an ultrafine grained C–Mn steel and their evolution during warm deformation and annealing. Acta Mater. 53(3), 845 (2005).

    Article  CAS  Google Scholar 

  11. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater. Sci. Eng., A. 441(1–2), 1 (2006).

    Article  Google Scholar 

  12. A. Najafi-Zadeh, J. Jonas, and S. Yue: Grain refinement by dynamic recrystallization during the simulated warm-rolling of interstitial free steels. Metall. Mater. Trans. A. 23(9), 2607 (1992).

    Article  Google Scholar 

  13. S.V.S.N. Murty, S. Torizuka, K. Nagai, T. Kitai, and Y. Kogo: Dynamic recrystallization of ferrite during warm deformation of ultrafine grained ultra-low carbon steel. Scr. Mater. 53(6), 763 (2005).

    Article  CAS  Google Scholar 

  14. H. Dong and X.J. Sun: Deformation induced ferrite transformation in low carbon steels. Curr. Opin. Solid State Mater. Sci. 9(6), 269 (2005).

    Article  CAS  Google Scholar 

  15. R. Bengochea, B. López, and I. Gutierrez: Microstructural evolution during the austenite-to-ferrite transformation from deformed austenite. Metall. Mater. Trans. A. 29(2), 417 (1998).

    Article  Google Scholar 

  16. T. Ungár, I. Alexandrov, and M. Zehetbauer: Ultrafine-grained microstructures evolving during severe plastic deformation. JOM. 52(4), 34 (2000).

    Article  Google Scholar 

  17. L.X. Du, S.J. Yao, X.H. Liu, and G.D. Wang: Growth behavior of ultrafine austenite grains in microalloyed steel. Acta Metall. Sinica 22(1), 7 (2009).

    Article  CAS  Google Scholar 

  18. Q.Y. Liu, S.H. Deng, X.J. Sun, H. Dong, and Y.Q. Weng: Effect of dissolved and precipitated niobium in microalloyed steel on deformation induced ferrite transformation (DIFT). J. Iron. Steel Res. Int. 16(4), 67 (2009).

    Article  CAS  Google Scholar 

  19. E. Ahmad, M. Sarwar, T. Manzoor, and N. Hussain: Ultrafine grain refinement in a low alloy steel. J. Mater. Eng. Perform. 15(3), 345 (2006).

    Article  CAS  Google Scholar 

  20. J.M. Aquino, C.A. Della Rovere, and S.E. Kuri: Intergranular corrosion susceptibility in supermartensitic stainless steel weldments. Corros. Sci. 51(10), 2316 (2009).

    Article  CAS  Google Scholar 

  21. S. Jain, N.D. Budiansky, J.L. Hudson, and J.R. Scully: Surface spreading of intergranular corrosion on stainless steels. Corros. Sci. 52(3), 873 (2010).

    Article  CAS  Google Scholar 

  22. J. Gong, Y.M. Jiang, B. Deng, J.L. Xu, J.P. Hu, and J. Li: Evaluation of intergranular corrosion susceptibility of UNS S31803 duplex stainless steel with an optimized double loop electrochemical potentiokinetic reactivation method. Electrochim. Acta 55(18), 5077 (2010).

    Article  CAS  Google Scholar 

  23. H. Tan, Y.M. Jiang, B. Deng, W.J. Gao, and J. Li: Evaluation of aged Incoloy 800 alloy sensitization to intergranular corrosion by means of double loop electrochemical methods and image analysis. Nucl. Eng. Des. 241(5), 1421 (2011).

    Article  CAS  Google Scholar 

  24. J. Verhoeven and E. Gibson: The divorced eutectoid transformation in steel. Metall. Mater. Trans. A. 29(4), 1181 (1998).

    Article  Google Scholar 

  25. T. Oyama, O.D. Sherby, J. Wadsworth, and B. Walser: Application of the divorced eutectoid transformation to the development of fine-grained, spheroidized structures in ultrahigh carbon steels. Scr. Metall. Mater. 18(8), 799 (1984).

    Article  CAS  Google Scholar 

  26. C. Syn, D. Lesuer, and O. Sherby: Influence of microstructure on tensile properties of spheroidized ultrahigh-carbon (1.8 Pct C) steel. Metall. Mater. Trans. A. 25(7), 1481 (1994).

    Article  Google Scholar 

  27. E. Taleff, C. Syn, D. Lesuer, and O. Sherby: Pearlite in ultrahigh carbon steels: Heat treatments and mechanical properties. Metall. Mater. Trans. A. 27(1), 111 (1996).

    Article  Google Scholar 

  28. P.W. Payson, W.L. Hodapp, and J. Leeder: The spheroidizing of steel by isothermal transformation. Trans. Am. Soc. Metals 28, 306 (1940).

    CAS  Google Scholar 

  29. J. Verhoeven: The role of the divorced eutectoid transformation in the spheroidization of 52100 steel. Metall. Mater. Trans. A. 31(10), 2431 (2000).

    Article  Google Scholar 

  30. W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu, and K. Lu: Nitriding iron at lower temperatures. Science 299(5607), 686 (2003).

    Article  CAS  Google Scholar 

  31. B. Bokstein and I. Razumovskii: Grain boundary diffusion and segregation in interstitial solid solutions based on bcc transition metals: Carbon in niobium. Interface Sci. 11(1), 41 (2003).

    Article  CAS  Google Scholar 

  32. F. Christien, R. Le Gall, and G. Saindrenan: Phosphorus grain boundary segregation in steel 17-4PH. Scr. Mater. 48(1), 11 (2003).

    Article  CAS  Google Scholar 

  33. W. Ostwald: Lehrbuch der Allgemeinen Chemie (Verlag von wilhelm engelmann, Leipzig, 1896).

    Google Scholar 

  34. Z.C. Liu, H.P. Ren, and H.Y. Wang: Austenite Formation and Pearlite Transformation (Metallurgical Industry Press, Beijing, China, 2010).

    Google Scholar 

  35. G.W. Greenwood: Mechanism of Phase Transformation in Crystalline Solids (Institute of Metals, London, UK, 1969).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for financial support from China National Science Foundation in Grant Nos. 50871082 and 51271137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ning Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lian, F.L., Liu, H.J., Sun, J.J. et al. Ultrafine grain effect on pearlitic transformation in hypereutectoid steel. Journal of Materials Research 28, 757–765 (2013). https://doi.org/10.1557/jmr.2012.397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.397

Navigation