Skip to main content
Log in

Mechanical behavior and microstructural characteristics of magnesium alloy containing {10-12} twin lamellar structure

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A hot-rolled AZ31 Mg alloy sheet was subjected to dynamic plastic deformation parallel to the rolling direction with the aim of introducing {10-12} twins. Subsequent tensile tests were carried out along the predeformed direction and the initial transverse direction (TD). It was found that untwinning led to a significant drop in yield stress when tension is carried out along the predeformed direction. And {10-12} twins and strain caused by twinning were recovered by untwinning. The tensile yield stress increased slightly with prestrain was correlated with the texture hardening caused by untwinning. When tension is carried out along initial TD, {10-12} twinning activity was restrained and slip dominated plastic deformation. The tensile yield stress increased significantly with prestrain was strongly correlated with the hardening contributions of {10-12} twins. {10-12} twinning led to the obvious yield stress in-plane anisotropy but had little effect on the maximum flow stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE I.
TABLE II.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. D.H. Avery, W.F. Hosford, and W.A. Backofen: Plastic anisotropy in magnesium alloy sheets. Trans. Metall. Soc. AIME 233, 71 (1965).

    Google Scholar 

  2. E.W. Kelley and W.F. Hosford: Plane-strain compression of magnesium and magnesium alloy crystals. Trans. Metall. Soc. AIME 242, 5 (1968).

    CAS  Google Scholar 

  3. J.A. del Valle, F. Carren, and O.A. Ruano: Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling. Acta Mater. 54, 4247 (2006).

    Article  CAS  Google Scholar 

  4. R. Gehrmann, M.M. Frommert, and G. Gottstein: Texture effects on plastic deformation of magnesium. Mater. Sci. Eng., A 395, 338 (2005).

    Article  Google Scholar 

  5. J.W. Christian and S. Mahajan: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).

    Article  Google Scholar 

  6. S.B. Yi, C.H.J. Davies, H.G. Brokmeier, R.E. Bolmaro, K.U. Kainer, and J. Homeyer: Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading. Acta Mater. 54, 549 (2006).

    Article  CAS  Google Scholar 

  7. L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, and S. Godet: Influence of {10-12} extension twinning on the flow behavior of AZ31 Mg alloy. Mater. Sci. Eng., A 445, 302 (2007).

    Article  Google Scholar 

  8. L. Jiang and J.J. Jonas: Effect of twinning on the flow behavior during strain path reversals in two Mg (+Al, Zn, Mn) alloys. Scr. Mater. 58, 803 (2008).

    Article  CAS  Google Scholar 

  9. G. Wan, B.L. Wu, Y.D. Zhang, G.Y. Sha, and C. Esling: Anisotropy of dynamic behavior of extruded AZ31 magnesium alloy. Mater. Sci. Eng., A 527, 2915 (2010).

    Article  Google Scholar 

  10. S.H. Choi, J.K. Kim, B.J. Kim, and Y.B. Park: The effect of grain size distribution on the shape of flow stress curves of Mg–3Al–1Zn under uniaxial compression. Mater. Sci. Eng., A 488, 458 (2008).

    Article  Google Scholar 

  11. L.E. Murr, E. Moin, and F. Greulich: The contribution of deformation twins to yield stress: The Hall-Petch law for inter-twin spacing. Scr. Metall. 12, 1031 (1978).

    Article  CAS  Google Scholar 

  12. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell: Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 52, 5093 (2004).

    Article  CAS  Google Scholar 

  13. I. Karaman, H. Sehitoglu, Y.I. Chumlyakov, I.V. Kireeva, and H.J. Maier: The effect of twinning and slip on the Bauschinger effect of Hadfield steel single crystals. Metall. Mater. Trans. A 32, 695 (2001).

    Article  Google Scholar 

  14. X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner: Hardening evolution of AZ31B Mg sheet. Int. J. Plast. 23, 44 (2007).

    Article  CAS  Google Scholar 

  15. G. Proust, C.N. Tome, A. Jain, and S.R. Agnew: Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int. J. Plast. 25, 861 (2009).

    Article  CAS  Google Scholar 

  16. Y.N. Wang and J.C. Huang: The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy. Acta Mater. 55, 897 (2007).

    Article  CAS  Google Scholar 

  17. S. Kleiner and P.J. Uggowitzer: Mechanical anisotropy of extruded Mg–6%Al–1%Zn alloy. Mater. Sci. Eng., A 379, 258 (2004).

    Article  Google Scholar 

  18. P.G. Partridge: Cyclic twinning in fatigued close-packed hexagonal metals. Philos. Mag. 12, 1043 (1965).

    Article  CAS  Google Scholar 

  19. N.V. Dudamell, I. Ulacia, F. Gálvez, S. Yi, J. Bohlen, D. Letzig, I. Hurtado, and M.T. Pérez-Prado: Twinning and grain subdivision during dynamic deformation of a Mg AZ31 sheet alloy at room temperature. Acta Mater. 59, 6949 (2011).

    Article  CAS  Google Scholar 

  20. L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, and S. Godet: Twinning and texture development in two Mg alloys subjected to loading along three different strain paths. Acta Mater. 55, 3899 (2007).

    Article  CAS  Google Scholar 

  21. S.R. Agnew and O. Duygulu: Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast. 21, 1161 (2005).

    Article  CAS  Google Scholar 

  22. Z. Keshavarz and M.R. Barnett: EBSD analysis of deformation modes in Mg-3Al-1Zn. Scr. Mater. 55, 915 (2006).

    Article  CAS  Google Scholar 

  23. C.H. Caceres and A.H. Blake: On the strain hardening behaviour of magnesium at room temperature. Mater. Sci. Eng., A 462, 193 (2007).

    Article  Google Scholar 

  24. E.A. Ball and P.B. Prangnell: Tensile-compressive yield asymmetries in high strength wrought magnesium alloys. Scr. Mater. 31, 111 (1994).

    Article  CAS  Google Scholar 

  25. S.R. Agnew, M.H. Yoo, and C.N. Tome: Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater. 49, 4277 (2001).

    Article  CAS  Google Scholar 

  26. M.R. Barnett: A Taylor model based description of the proof stress of magnesium AZ31 during hot working. Metall. Mater. Trans. A 34A, 1799 (2003).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation of China (Grant Nos. 51071183, 50890170, and 51271208) and the Fundamental Research Funds for the Central Universities (Grant No. CDJXS11132225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiyan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, C., Zhang, X., Wang, R. et al. Mechanical behavior and microstructural characteristics of magnesium alloy containing {10-12} twin lamellar structure. Journal of Materials Research 28, 733–739 (2013). https://doi.org/10.1557/jmr.2012.394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.394

Navigation