Skip to main content
Log in

Thermal stability of highly nanotwinned copper: The role of grain boundaries and texture

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To study the effect of nanotwins on thermal stability, a comprehensive characterization study was performed on two types of ultrafine grained (UFG) copper samples, with and without nanotwins. The two samples were sequentially heat-treated at elevated temperatures, and the grain size, grain boundary character, and texture were characterized after each heat treatment. The as-prepared nanotwinned (nt) copper foil had an average columnar grain size of ≈700 nm with a high density of coherent twin boundaries (CTBs) (twin thickness, ≈40 nm), which remained stable up to 300 °C. In contrast, the other UFG sample had few CTBs, and rapid grain growth was observed at 200 °C. The thermal stability of nt copper is discussed with respect to the presence of the low energy nanotwins, triple junctions between the twins and columnar grains, texture and grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Table I.
Fig. 7.
Table II.

Similar content being viewed by others

References

  1. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu: Ultrahigh strength and high electrical conductivity in copper. Science 304(5669), 422 (2004).

    Article  CAS  Google Scholar 

  2. L. Lu, X. Chen, X. Huang, and K. Lu: Revealing the maximum strength in nanotwinned copper. Science 323(5914), 607 (2009).

    Article  CAS  Google Scholar 

  3. L. Lu, K. Lu, and S. Suresh: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324(5925), 349 (2009).

    Article  CAS  Google Scholar 

  4. A.M. Hodge, Y.M. Wang, and T.W. Barbee, Jr.: Mechanical deformation of high-purity sputter-deposited nano-twinned copper. Scr. Mater. 59(2), 163 (2008).

    Article  CAS  Google Scholar 

  5. C.J. Shute, B.D. Myers, S. Xie, S.Y. Li, T.W. Barbee, Jr., A.M. Hodge, and J.R. Weertman: Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins. Acta Mater. 59(11), 4569 (2011).

    Article  CAS  Google Scholar 

  6. O. Anderoglu, A. Misra, H. Wang, and X. Zhang: Thermal stability of sputtered Cu films with nanoscale growth twins. J. Appl. Phys. 103(9), 094322 (2008).

    Article  Google Scholar 

  7. X. Zhang and A. Misra: Superior thermal stability of coherent twin boundaries in nanotwinned metals. Scr. Mater. 66(11), 860 (2012).

    Article  CAS  Google Scholar 

  8. D. Xu, V. Sriram, V. Ozolins, J.M. Yang, K.N. Tu, G.R. Stafford, C. Beauchamp, I. Zienert, H. Geisler, P. Hofmann, and E. Zschech: Nanotwin formation and its physical properties and effect on reliability of copper interconnects. Microelectron. Eng. 85(10), 2155 (2008).

    Article  CAS  Google Scholar 

  9. C. Saldana, T.G. Murthy, M.R. Shankar, E.A. Stach, and S. Chandrasekar: Stabilizing nanostructured materials by coherent nanotwins and their grain boundary triple junction drag. Appl. Phys. Lett. 94(2), 021910 (2009).

    Article  Google Scholar 

  10. C. Saldana, A.H. King, E.A. Stach, W.D. Compton, and S. Chandrasekar: Vacancies, twins, and the thermal stability of ultrafine-grained copper. Appl. Phys. Lett. 99(23), 231911 (2011).

    Article  Google Scholar 

  11. M. Kobiyama, T. Inami, and S. Okuda: Mechanical behavior and thermal stability of nanocrystalline copper film prepared by gas deposition method. Scr. Mater. 44(8-9), 1547 (2001).

    Article  CAS  Google Scholar 

  12. J.M. Zhang, K.W. Xu, and V. Ji: Competition between surface and strain energy during grain growth in free-standing and attached Ag and Cu films on Si substrates. Appl. Surf. Sci. 187(1-2), 60 (2002).

    Article  CAS  Google Scholar 

  13. F. Ma, J.M. Zhang, and K.W. Xu: Surface-energy-driven abnormal grain growth in Cu and Ag films. Appl. Surf. Sci. 242(1-2), 55 (2005).

    Article  CAS  Google Scholar 

  14. K. Mirpuri, H. Wendrock, S. Menzel, K. Wetzig, and J. Szpunar: Texture evolution in copper film at high temperature studied in situ by electron back-scatter diffraction. Thin Solid Films 496(2), 703 (2006).

    Article  CAS  Google Scholar 

  15. J.M. Zhang, K.W. Xu, and V. Ji: Dependence of strain energy on the grain orientations in an FCC-polycrystalline film on rigid substrate. Appl. Surf. Sci. 185(3-4), 177 (2002).

    Article  CAS  Google Scholar 

  16. A.S.T.M. International: Determining Average Grain Size Using Electron Backscatter Diffraction (EBSD) in Fully Recrystallized Polycrystalline Materials (ASTM Standard E2627., West Consho-hocken, PA, 2010).

    Google Scholar 

  17. F.J. Humphreys: Review grain and subgrain characterisation by electron backscatter diffraction. J. Mater. Sci. 36(16), 3833 (2001).

    Article  CAS  Google Scholar 

  18. V. Randle: A methodology for grain boundary plane assessment by single-section trace analysis. Scr. Mater. 44(12), 2789 (2001).

    Article  CAS  Google Scholar 

  19. S.I. Wright and R.J. Larsen: Extracting twins from orientation imaging microscopy scan data. J. Microsc. 205(3), 245 (2002).

    Article  CAS  Google Scholar 

  20. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Current issues in recrystallization: A review. Mater. Today 1(2), 14 (1998).

    Article  Google Scholar 

  21. P. Sonnweber-Ribic, P. Gruber, G. Dehm, and E. Arzt: Texture transition in Cu thin films: Electron backscatter diffraction vs. x-ray diffraction. Acta Mater. 54(15), 3863 (2006).

    Article  CAS  Google Scholar 

  22. C.V. Thompson and R. Carel: Grain growth and texture evolution in thin films. Mater. Sci. Forum 204-206, 83 (1996).

    Article  CAS  Google Scholar 

  23. E.A. Holm and S.M. Foiles: How grain growth stops: A mechanism for grain-growth stagnation in pure materials. Science 328(5982), 1138 (2010).

    Article  CAS  Google Scholar 

  24. K.G.F. Janssens, D. Olmsted, E.A. Holm, S.M. Foiles, S.J. Plimpton, and P.M. Derlet: Computing the mobility of grain boundaries. Nat. Mater. 5(2), 124 (2006).

    Article  CAS  Google Scholar 

  25. D.L. Olmsted, S.M. Foiles, and E.A. Holm: Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater. 57(13), 3694 (2009).

    Article  CAS  Google Scholar 

  26. D.P. Field, L.T. Bradford, M.M. Nowell, and T.M. Lillo: The role of annealing twins during recrystallization of Cu. Acta Mater. 55(12), 4233 (2007).

    Article  CAS  Google Scholar 

  27. R.L. Fullman and J.C. Fisher: Formation of annealing twins during grain growth. J. Appl. Phys. 22(11), 1350 (1951).

    Article  CAS  Google Scholar 

  28. C. Lingk, M.E. Gross, and W.L. Brown: Texture development of blanket electroplated copper films. J. Appl. Phys. 87(5), 2232 (2000).

    Article  CAS  Google Scholar 

  29. A. Berger, P.J. Wilbrandt, F. Ernst, U. Klement, and P. Haasen: On the generation of new orientations during recrystallization: Recent results on the recrystallization of tensile-deformed fcc single crystals. Prog. Mater. Sci. 32(1), 1 (1988).

    Article  CAS  Google Scholar 

  30. G. Gottstein and L.S. Shvindlerman: Structure of grain boundaries, In Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd ed.; B. Ralph ed. (CRC Press, Boca Raton, FL 2010); p. 111.

    Google Scholar 

Download references

Acknowledgments

This work was performed under the auspices of NSF Grant No. NSF-DMR-0955338. Sample characterization and preparation were partly carried out with the support of the Karlsruhe Nano Micro Facility, a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology. The authors would like to thank Dr. Troy Barbee at LLNL for preliminary samples and helpful discussions regarding sample synthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Maria Hodge.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Allen Furnish, T., Ernest Kassner, M. et al. Thermal stability of highly nanotwinned copper: The role of grain boundaries and texture. Journal of Materials Research 27, 3049–3057 (2012). https://doi.org/10.1557/jmr.2012.376

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.376

Navigation