Skip to main content
Log in

Molecular dynamics simulations of the interactions between TiO2 nanoparticles and water with Na+ and Cl, methanol, and formic acid using a reactive force field

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Simulations of TiO2(both rutile and anatase) nanoparticles with water, methanol, and formic acid were conducted using a ReaxFF reactive force field to investigate the characteristic behavior of reactivity to these organic solvents. The force field was validated by comparing water dissociative adsorption percentage and bond length between Na and O with density functional theory (DFT) and experimental results. In the simulations, 1-nm rutile and anatase nanoparticles with water, methanol, and formic acid were used, respectively. The numbers of attached hydroxyl with time and nanoparticles distortion levels are presented. We found that the rutile nanoparticle is more reactive than the anatase nanoparticle and that formic acid distorts nanoparticles more than water and methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. F. Labat, P. Baranek, C. Domain, C. Minot, and C. Adamo: Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: Performances of different exchange-correlation functionals. J. Chem. Phys. 126(15), 12 (2007).

    Article  CAS  Google Scholar 

  2. R.E. Tanner, Y. Liang, and E.I. Altman: Structure and chemical reactivity of adsorbed carboxylic acids on anatase TiO2(001). Surf. Sci. 506(3), 251–271 (2002).

    Article  CAS  Google Scholar 

  3. A. Sasahara, H. Uetsuka, and H. Onishi: NC-AFM topography of HCOO and CH3COO molecules co-adsorbed on TiO2(110). Appl. Phys. A-Mater. Sci. Process. 72, S101–S103 (2001).

    Article  Google Scholar 

  4. D.I. Sayago, M. Polcik, R. Lindsay, R.L. Toomes, J.T. Hoeft, M. Kittel, and D.P. Woodruff: Structure determination of formic acid reaction products on TiO2(110). J. Phys. Chem. B 108(38), 14316–14323 (2004).

    Article  CAS  Google Scholar 

  5. B.E. Hayden, A. King, and M.A. Newton: Fourier transform reflection-absorption IR spectroscopy study of formate adsorption on TiO2(110). J. Phys. Chem. B 103(1), 203–208 (1999).

    Article  CAS  Google Scholar 

  6. K. Fukui, H. Onishi, and Y. Iwasawa: Imaging of individual formate ions adsorbed on TiO2(110) surface by non-contact atomic force microscopy. Chem. Phys. Lett. 280(3–4), 296–301 (1997).

    Article  CAS  Google Scholar 

  7. G.Y. Popova, T.V. Andrushkevich, Y.A. Chesalov, and E.S. Stoyanov: In situ FTIR study of the adsorption of formaldehyde, formic acid, and methyl formiate at the surface of TiO2 (anatase). Kinet. Catal. 41(6), 805–811 (2000).

    Article  CAS  Google Scholar 

  8. A. Vittadini, A. Selloni, F.P. Rotzinger, and M. Gratzel: Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys. Rev. Lett. 81(14), 2954–2957 (1998).

    Article  CAS  Google Scholar 

  9. K.S. Kim and M.A. Barteau: Pathways for carboxylic-acid decomposition on TiO2. Langmuir 4(4), 945–953 (1988).

    Article  CAS  Google Scholar 

  10. A. Vittadini, A. Selloni, F.P. Rotzinger, and M. Gratzel: Formic acid adsorption on dry and hydrated TiO2 anatase (101) surfaces by DFT calculations. J. Phys. Chem. B 104(6), 1300–1306 (2000).

    Article  CAS  Google Scholar 

  11. F.P. Rotzinger, J.M. Kesselman-Truttmann, S.J. Hug, V. Shklover, and M. Gratzel: Structure and vibrational spectrum of formate and acetate adsorbed from aqueous solution onto the TiO2 rutile (110) surface. J. Phys. Chem. B 108(16), 5004–5017 (2004).

    Article  CAS  Google Scholar 

  12. C.Y. Wang, H. Groenzin, and M.J. Shultz: Comparative study of acetic acid, methanol, and water adsorbed on anatase TiO2 probed by sum frequency generation spectroscopy. J. Am. Chem. Soc. 127(27), 9736–9744 (2005).

    Article  CAS  Google Scholar 

  13. D.A. Panayotov, S.P. Burrows, and J.R. Morris: Photooxidation mechanism of methanol on rutile TiO2 nanoparticles. J. Phys. Chem. C 116(11), 6623–6635 (2012).

    Article  CAS  Google Scholar 

  14. A. Tilocca and A. Selloni: Methanol adsorption and reactivity on clean and hydroxylated anatase(101) surfaces. J. Phys. Chem. B 108(50), 19314–19319 (2004).

    Article  CAS  Google Scholar 

  15. W.J. Liu, J.G. Wang, X.J. Guo, W. Fang, M.J. Wei, X.H. Lu, and L.H. Lu: Dissociation of methanol on hydroxylated TiO(2)-B (1 0 0) surface: Insights from first principle DFT calculation. Catal. Today 165(1), 32–40 (2011).

    Article  CAS  Google Scholar 

  16. C.H. Sun, L.M. Liu, A. Selloni, G.Q. Lu, and S.C. Smith: Titania-water interactions: A review of theoretical studies. J. Mater. Chem. 20(46), 10319–10334 (2010).

    Article  CAS  Google Scholar 

  17. U. Diebold, N. Ruzycki, G.S. Herman, and A. Selloni: One step towards bridging the materials gap: Surface studies of TiO2 anatase. Catal. Today 85(2–4), 93–100 (2003).

    Article  CAS  Google Scholar 

  18. P.A. Thiel and T.E. Madey: The interaction of water with solid-surfaces - fundamental aspects. Surf. Sci. Rep. 7(6–8), 211–385 (1987).

    Article  CAS  Google Scholar 

  19. A. Vittadini, M. Casarin, and A. Selloni: Chemistry of and on TiO2-anatase surfaces by DFT calculations: A partial review. Theor. Chem. Acc. 117(5–6), 663–671 (2007).

    Article  CAS  Google Scholar 

  20. R.L. Kurtz, R. Stockbauer, T.E. Madey, E. Roman, and J.L. Desegovia: Synchrotron radiation studies of H2O adsorption on TiO2(110). Surf. Sci. 218(1), 178–200 (1989).

    Article  CAS  Google Scholar 

  21. M.B. Hugenschmidt, L. Gamble, and C.T. Campbell: The interaction of H2O with a TiO2(110) surface. Surf. Sci. 302(3), 329–340 (1994).

    Article  CAS  Google Scholar 

  22. M.A. Henderson: An HREELS and TPD study of water on TiO2(110): The extent of molecular versus dissociative adsorption. Surf. Sci. 355(1–3), 151–166 (1996).

    Article  CAS  Google Scholar 

  23. M.A. Henderson: Structural sensitivity in the dissociation of water on TiO2 single-crystal surfaces. Langmuir 12(21), 5093–5098 (1996).

    Article  CAS  Google Scholar 

  24. D. Brinkley, M. Dietrich, T. Engel, P. Farrall, G. Gantner, A. Schafer, and A. Szuchmacher: A modulated molecular beam study of the extent of H2O dissociation on TiO2(110). Surf. Sci. 395(2–3), 292–306 (1998).

    Article  CAS  Google Scholar 

  25. I.M. Brookes, C.A. Muryn, and G. Thornton: Imaging water dissociation on TiO2(110). Phys. Rev. Lett. 87(26), 4 (2001).

    Article  CAS  Google Scholar 

  26. S. Krischok, O. Hofft, J. Gunster, J. Stultz, D.W. Goodman, and V. Kempter: H2O interaction with bare and Li-precovered TiO2: Studies with electron spectroscopies (MIES and UPS(HeI and II)). Surf. Sci. 495(1–2), 8–18 (2001).

    Article  CAS  Google Scholar 

  27. L.M. Liu, C.J. Zhang, G. Thornton, and A. Michaelides: Structure and dynamics of liquid water on rutile TiO2(110). Phys. Rev. B 82(16), 4 (2010).

    Google Scholar 

  28. D.J. Wesolowski, J.O. Sofo, A.V. Bandura, Z. Zhang, E. Mamontov, M. Predota, N. Kumar, J.D. Kubicki, P.R.C. Kent, L. Vlcek, M.L. Machesky, P.A. Fenter, P.T. Cummings, L.M. Anovitz, A.A. Skelton, and J. Rosenqvist: Comment on “Structure and dynamics of liquid water on rutile TiO2(110)”. Phys. Rev. B 85(16), 5 (2012).

    Article  CAS  Google Scholar 

  29. A. Tilocca and A. Selloni: Vertical and lateral order in adsorbed water layers on anatase TiO2(101). Langmuir 20(19), 8379–8384 (2004).

    Article  CAS  Google Scholar 

  30. A. Selloni, A. Vittadini, and M. Gratzel: The adsorption of small molecules on the TiO2 anatase(101) surface by first-principles molecular dynamics. Surf. Sci. 402(1–3), 219–222 (1998).

    Article  Google Scholar 

  31. G.S. Herman, Z. Dohnalek, N. Ruzycki, and U. Diebold: Experimental investigation of the interaction of water and methanol with anatase-TiO2(101). J. Phys. Chem. B 107(12), 2788–2795 (2003).

    Article  CAS  Google Scholar 

  32. M. Lazzeri, A. Vittadini, and A. Selloni: Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 63(15), 9 (2001).

    Article  CAS  Google Scholar 

  33. T. Bredow and K. Jug: Theoretical investigation of water-adsorption at rutile and anatase surfaces. Surf. Sci. 327(3), 398–408 (1995).

    Article  CAS  Google Scholar 

  34. A. Fahmi and C. Minot: A theoretical investigation of water-adsorption on titanium-dioxide surfaces. Surf. Sci. 304(3), 343–359 (1994).

    Article  CAS  Google Scholar 

  35. S.Y. Kim, N. Kumar, P. Persson, J. Sofo, A.C.T. van Duin, and J.D. Kubicki: Development of a ReaxFF reactive force field for titanium dioxide/water systems. J. Comput. Chem. (2012, submitted).

    Google Scholar 

  36. W.J. Mortier, S.K. Ghosh, and S. Shankar: Electronegativity equalization method for the calculation of atomic charges in molecules. J. Am. Chem. Soc. 108(15), 4315–4320 (1986).

    Article  CAS  Google Scholar 

  37. A.C.T. van Duin and S.R. Larter: Molecular dynamics investigation into the adsorption of organic compounds on kaolinite surfaces. Org. Geochem. 32(1), 143–150 (2001).

    Article  CAS  Google Scholar 

  38. K. Chenoweth, A.C.T. van Duin, and W.A. Goddard: ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 112(5), 1040–1053 (2008).

    Article  CAS  Google Scholar 

  39. O. Rahaman, A.C.T. van Duin, W.A. Goddard, and D.J. Doren: Development of a ReaxFF reactive force field for glycine and application to solvent effect and tautomerization. J. Phys. Chem. B 115(2), 249–261 (2011).

    Article  CAS  Google Scholar 

  40. S. Monti, A.C.T. van Duin, S-Y. Kim, and V. Barone: Exploration of the conformational and reactive dynamics of glycine during and after its adsorption onto titania: Computational investigations in the gas phase and in solution. J. Phys. Chem. C 116, 5141–5150 (2012).

    Article  CAS  Google Scholar 

  41. O. Rahaman, A.C.T. van Duin, V.S. Bryantsev, J.E. Mueller, S.D. Solares, W.A. Goddard, and D.J. Doren: Development of a ReaxFF reactive force field for aqueous chloride and copper chloride. J. Phys. Chem. A 114, 3556–3568 (2010).

    Article  CAS  Google Scholar 

  42. H. Manzano, F-J. Ulm, A. van Duin, R. Pellenq, F. Marinelli, and S. Moeni: Water polarization and dissociation in confined nanopores: Mechanism, dipole distribution, and impact on the substrate properties. J. Am. Chem. Soc. 134, 2208–2215 (2012).

    Article  CAS  Google Scholar 

  43. H. Manzano, R. Pellenq, F-J. Ulm, M.J. Buehler, and A.C.T. van Duin: Hydration of calcium oxide predicted by reactive force field molecular dynamics. Langmuir 28, 4187–4197 (2012).

    Article  CAS  Google Scholar 

  44. N. Kumar, S. Neogi, P.R.C. Kent, A.V. Bandura, J.D. Kubicki, D.J. Wesolowski, D. Cole, and J.O. Sofo: Hydrogen bonds and vibrations of water on (110) rutile. J. Phys. Chem. C 113(31), 13732–13740 (2009).

    Article  CAS  Google Scholar 

  45. Y. Marcus: Ionic-radii in aqueous-solutions. Chem. Rev. 88(8), 1475–1498 (1988).

    Article  CAS  Google Scholar 

  46. D.R. Hummer, J.D. Kubicki, P.R.C. Kent, J.E. Post, and P.J. Heaney: Origin of nanoscale phase stability reversals in titanium oxide polymorphs. J. Phys. Chem. C 113(11), 4240–4245 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by funds from NSF (EAR—0842555) award. Computational support was provided by the Research Computation and Cyber infrastructure group at The Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Yup Kim.

Appendix

Appendix

Supplementary materials can be viewed in this issue of the Journal of Materials Research by visiting u]http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SY., van Duin, A.C. & Kubicki, J.D. Molecular dynamics simulations of the interactions between TiO2 nanoparticles and water with Na+ and Cl, methanol, and formic acid using a reactive force field. Journal of Materials Research 28, 513–520 (2013). https://doi.org/10.1557/jmr.2012.367

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.367

Navigation