Skip to main content
Log in

Compressive response of vertically aligned carbon nanotube films gleaned from in situ flat-punch indentations

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report the mechanical behavior of vertically aligned carbon nanotube films, grown on Si substrates using atmospheric pressure chemical vapor deposition, subjected to in situ large displacement (up to 70 μm) flat-punch indentations. We observed three distinct regimes in their indentation stress–strain curves: (i) a short elastic regime, followed by (ii) a sudden instability, which resulted in a substantial rapid displacement burst manifested by an instantaneous vertical shearing of the material directly underneath the indenter tip by as much as 30 μm, and (iii) a positively sloped plateau for displacements between 10 and 70 μm. In situ nanomechanical indentation experiments revealed that the shear strain was accommodated by an array of coiled carbon nanotube “microrollers,” providing a low-friction path for the vertical displacement. Mechanical response and concurrent deformation morphologies are discussed in the foam-like deformation framework with a particular emphasis on boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 5
FIG. 3
FIG. 2
FIG. 4
FIG. 7
FIG. 6

Similar content being viewed by others

References

  1. C.M. McCarter, R.F. Richards, S.D. Mesarovic, C.D. Richards, D.F. Bahr, D. McClain, and J. Jiao: Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf. J. Mater. Sci. 41, 7872 (2006).

    CAS  Google Scholar 

  2. A.A. Zbib, S.D. Mesarovic, E.T. Lilleodden, D. McClain, J. Jiao, and D.F. Bahr: The coordinated buckling of carbon nanotube turfs under uniform compression. Nanotechnology 19, 175704 (2008).

    CAS  Google Scholar 

  3. B.A. Cola, J. Xu, and T.S. Fisher: Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int. J. Heat Mass Transfer 52, 3490 (2009).

    CAS  Google Scholar 

  4. A. Misra, J.R. Greer, and C. Daraio: Strain rate effects in the mechanical response of polymer-anchored carbon nanotube foams. Adv. Mater. 20, 1 (2008).

    Google Scholar 

  5. A.Y. Cao, P.L. Dickrell, W.G. Sawyer, M.N. Ghasemi-Nejhad, and P.M. Ajayan: Super-compressible foamlike carbon nanotube films. Science 310, 1307 (2005).

    CAS  Google Scholar 

  6. J. Cho, C. Richards, D. Bahr, J. Jiao, and R. Richards: Evaluation of contacts for a MEMS thermal switch. J. Micromech. Microeng. 18(105012), 1–6 (2008).

    Google Scholar 

  7. J.F. Waters, P.R. Guduru, M. Jouzi, J.M. Xu, T. Hanlon, and S. Suresh: Shell buckling of individual multiwalled carbon nanotubes using nanoindentation. Appl. Phys. Lett. 87, 103109 (2005).

    Google Scholar 

  8. S. Pathak, Z.G. Cambaz, S.R. Kalidindi, J.G. Swadener, and Y. Gogotsi: Viscoelasticity and high buckling stress of dense carbon nanotube brushes. Carbon 47, 1969 (2009).

    CAS  Google Scholar 

  9. S. Pathak, E.J. Lim, P. Pour Shahid Saeed Abadi, S. Graham, B.A. Cola, and J.R. Greer: Higher recovery and better energy dissipation at faster strain rates in carbon nanotube bundles: An in situ study. ACS Nano 6(3), 2189–2197 (2012).

    CAS  Google Scholar 

  10. M. Kumar and Y. Ando: Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10, 3739 (2010).

    CAS  Google Scholar 

  11. S.B. Hutchens, L.J. Hall, and J.R. Greer: In situ mechanical testing reveals periodic buckle nucleation and propagation in carbon nanotube bundles. Adv. Funct. Mater. 20, 2338 (2010).

    CAS  Google Scholar 

  12. S.B. Hutchens, A. Needleman, and J.R. Greer: Analysis of uniaxial compression of vertically aligned carbon nanotubes. J. Mech. Phys. Solids 59, 2227 (2011).

    CAS  Google Scholar 

  13. J. Suhr, P. Victor, L.C.S. Sreekala, X. Zhang, O. Nalamasu, and P.M. Ajayan: Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nat. Nanotechnol. 2, 417 (2007).

    CAS  Google Scholar 

  14. T. Tong, Y. Zhao, L. Delzeit, A. Kashani, M. Meyyappan, and A. Majumdar: Height independent compressive modulus of vertically aligned carbon nanotube arrays. Nano Lett. 8, 511 (2008).

    CAS  Google Scholar 

  15. S.D. Mesarovic, C.M. McCarter, D.F. Bahr, H. Radhakrishnan, R.F. Richards, C.D. Richards, D. McClain, and J. Jiao: Mechanical behavior of a carbon nanotube turf. Scr. Mater. 56, 157 (2007).

    CAS  Google Scholar 

  16. A. Qiu, D.F. Bahr, A.A. Zbib, A. Bellou, S.D. Mesarovic, D. McClain, W. Hudson, J. Jiao, D. Kiener, and M.J. Cordill: Local and non-local behavior and coordinated buckling of CNT turfs. Carbon 49, 1430 (2011).

    CAS  Google Scholar 

  17. Q. Zhang, Y.C. Lu, F. Du, L. Dai, J. Baur, and D.C. Foster: Viscoelastic creep of vertically aligned carbon nanotubes. J. Phys. D: Appl. Phys. 43, 315401 (2010).

    Google Scholar 

  18. C.P. Deck, J. Flowers, G.S.B. McKee, and K. Vecchio: Mechanical behavior of ultralong multiwalled carbon nanotube mats. J. Appl. Phys. 101, 23512 (2007).

    Google Scholar 

  19. M. Xu, D.N. Futaba, T. Yamada, M. Yumura, and K. Hata: Carbon nanotubes with temperature-invariant viscoelasticity from-196 degrees to 1000 degrees C. Science 330, 1364 (2010).

    CAS  Google Scholar 

  20. M. Xu, D.N. Futaba, M. Yumura, and K. Hata: Carbon nanotubes with temperature-invariant creep and creep-recovery from −190 to 970 °C. Adv. Mater. 23, 3686 (2011).

    CAS  Google Scholar 

  21. C. Cao, A. Reiner, C. Chung, S-H. Chang, I. Kao, R.V. Kukta, and C.S. Korach: Buckling initiation and displacement dependence in compression of vertically aligned carbon nanotube arrays. Carbon 49, 3190 (2011).

    CAS  Google Scholar 

  22. M.R. Maschmann, Z. Qiuhong, D. Feng, D. Liming, and J. Baur: Length dependent foam-like mechanical response of axially indented vertically oriented carbon nanotube arrays. Carbon 49, 386 (2011).

    CAS  Google Scholar 

  23. P. Pour Shahid Saeed Abadi, S. Hutchens, J.H. Taphouse, J.R. Greer, B.A. Cola, and S. Graham: The effect of morphology on the micro-compression response of carbon nanotube forests. Nanoscale 4(11), 3373–3380 (2012).

    Google Scholar 

  24. M.R. Maschmann, Q. Zhang, R. Wheeler, F. Du, L. Dai, and J. Baur: In situ SEM observation of column-like and foam-like CNT array nanoindentation. ACS Appl. Mater. Interfaces 3, 648 (2011).

    CAS  Google Scholar 

  25. P.D. Bradford, X. Wang, H. Zhao, and Y.T. Zhu: Tuning the compressive mechanical properties of carbon nanotube foam. Carbon 49, 2834 (2011).

    CAS  Google Scholar 

  26. J-Y. Kim and J.R. Greer: Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Mater. 57, 5245 (2009).

    CAS  Google Scholar 

  27. J.P. Tu, C.X. Jiang, S.Y. Guo, and M.F. Fu: Micro-friction characteristics of aligned carbon nanotube film on an anodic aluminum oxide template. Mater. Lett. 58, 1646 (2004).

    CAS  Google Scholar 

  28. J.P. Tu, L.P. Zhu, K. Hou, and S.Y. Guo: Synthesis and frictional properties of array film of amorphous carbon nanofibers on anodic aluminum oxide. Carbon 41, 1257 (2003).

    CAS  Google Scholar 

  29. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  30. W.C. Oliver and G.M. Pharr: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    CAS  Google Scholar 

  31. V.S. Deshpande and N.A. Fleck: Isotropic constitutive models for metallic foams. J. Mech. Phys. Solids 48, 1253 (2000).

    CAS  Google Scholar 

  32. M.F. Ashby: Materials Selection in Mechanical Design, 3rd ed. (Butterworth-Heinemann, Oxford, 2005).

    Google Scholar 

  33. R. Hill: The Mathematical Theory of Plasticity (Oxford University Press, Oxford, 1950).

    Google Scholar 

  34. E.G. Herbert, W.C. Oliver, and G.M. Pharr: Nanoindentation and the dynamic characterization of viscoelastic solids. J. Phys. D: Appl. Phys. 41, 074021 (2008).

    Google Scholar 

  35. E.G. Herbert, W.C. Oliver, A. Lumsdaine, and G.M. Pharr: Measuring the constitutive behavior of viscoelastic solids in the time and frequency domain using flat punch nanoindentation. J. Mater. Res. 24, 626 (2009).

    CAS  Google Scholar 

  36. W.J. Wright, A.R. Maloney, and W.D. Nix: An improved analysis for viscoelastic damping in dynamic nanoindentation. Int. J. Surf. Sci. Eng. 1, 274 (2007).

    Google Scholar 

  37. W.J. Wright and W.D. Nix: Storage and loss stiffnesses and moduli as determined by dynamic nanoindentation. J. Mater. Res. 24(3), 863 (2009).

    CAS  Google Scholar 

  38. S. Pathak, J. Gregory Swadener, S.R. Kalidindi, H-W. Courtland, K.J. Jepsen, and H.M. Goldman: Measuring the dynamic mechanical response of hydrated mouse bone by nanoindentation. J. Mech. Behav. Biomed. Mater. 4, 34 (2011).

    Google Scholar 

  39. N.A. Fleck, H. Otoyo, and A. Needleman: Indentation of porous solids. Int. J. Solids Struct. 29, 1613 (1992).

    Google Scholar 

  40. P. Sudheer Kumar, S. Ramchandra, and U. Ramamurty: Effect of displacement-rate on the indentation behavior of an aluminum foam. Mater. Sci. Eng., A 347, 330 (2003).

    Google Scholar 

  41. E.A. Flores-Johnson and Q.M. Li: Indentation into polymeric foams. Int. J. Solids Struct. 47, 1987 (2010).

    Google Scholar 

  42. A. Pantano, D.M. Parks, and M.C. Boyce: Mechanics of deformation of single- and multi-wall carbon nanotubes. J. Mech. Phys. Solids 52, 789 (2004).

    CAS  Google Scholar 

  43. R.S. Lakes: Viscoelastic Solids (CRC Press, Boca Raton, FL, 1998).

    Google Scholar 

  44. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Google Scholar 

  45. I.M. Ward and J. Sweeney: An Introduction to the Mechanical Properties of Solid Polymers, 2nd ed. (Wiley, West Sussex, UK, 2004).

    Google Scholar 

  46. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, UK, 1999).

    Google Scholar 

  47. E.W. Andrews, L.J. Gibson, and M.F. Ashby: The creep of cellular solids. Acta Mater. 47, 2853 (1999).

    CAS  Google Scholar 

  48. E.W. Andrews, G. Gioux, P. Onck, and L.J. Gibson: Size effects in ductile cellular solids. Part II: Experimental results. Int. J. Mech. Sci. 43, 701 (2001).

    Google Scholar 

  49. S. Pathak, N. Mohan, E. Decolvenaere, A. Needleman, M. Bedewy, A.J. Hart, and J.R. Greer: Effect of density gradients on the deformation of carbon nanotube pillars: An in-situ study. (2012, submitted).

    Google Scholar 

  50. Y. Gogotsi: High-temperature rubber made from carbon nanotubes. Science 330, 1332 (2010).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge S. Hutchens and A. Needleman for helpful insights and guidance, E. Lim for data analysis, financial support from the Georgia Institute of Technology Foundation through the Joseph Anderer Faculty Fellowship, and the Institute for Collaborative Biotechnologies (ICB) for financial support through Grant No. W911NF-09-0001 from the U.S. Army Research Office. The content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred. S.P. gratefully acknowledges support from the W.M. Keck Institute for Space Studies Postdoctoral Fellowship program for this work. We gratefully acknowledge critical support and infrastructure provided for this work by the Kavli Nanoscience Institute at Caltech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Pathak.

Supplementary Material

Supplementary Material

Supplementary material can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathak, S., Mohan, N., Abadi, P.P.S.S. et al. Compressive response of vertically aligned carbon nanotube films gleaned from in situ flat-punch indentations. Journal of Materials Research 28, 984–997 (2013). https://doi.org/10.1557/jmr.2012.366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.366

Navigation