Skip to main content
Log in

A simple low-cost synthesis of brookite TiO2 nanoparticles

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new low-cost synthesis of brookite TiO2nanoparticles using isopropanol as both the solvent and ligand is described here. Other ligands can be bound to the titania surface during or postsynthesis to tailor the particles’ functionality. The often extremely rapid hydrolysis of titanium isopropoxide has been successfully controlled so that nanoparticle growth is achieved. The resulting 4-nm particles are nonagglomerated, stable in solution, and have a low polydispersity. The synthesis is scalable and enables the simple fabrication of large amounts of titania nanoparticles that do not scatter visible light and are highly suited for incorporation into optical composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. A.C. Arango, S.A. Carter, and P.J. Brock: Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles. Appl. Phys. Lett. 74, 1698 (1999).

    Article  CAS  Google Scholar 

  2. M. Gratzel: Photoelectrochemical cells. Nature 414, 338 (2001).

    Article  CAS  Google Scholar 

  3. W.J. Stark, K. Wegner, S.E. Pratsinis, and A. Baiker: Flame aerosol synthesis of vanadia-titania nanoparticles: Structural and catalytic properties in the selective catalytic reduction of NO by NH3. J. Catal. 197, 182 (2001).

    Article  CAS  Google Scholar 

  4. J.C. Yu, J.G. Yu, W.K. Ho, and L.Z. Zhang: Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chem. Commun. 19, 1942 (2001).

    Article  CAS  Google Scholar 

  5. S.T. Martin, H. Herrmann, W.Y. Choi, and M.R. Hoffmann: Time-resolved microwave conductivity. 1. TiO2 photoreactivity and size quantization. J. Chem. Soc., Faraday Trans. 90, 3315 (1994).

    Article  CAS  Google Scholar 

  6. W.Y. Choi, A. Termin, and M.R. Hoffmann: The role of metal-ion dopants in quantum-sized TiO2 - correlation between photoreactivity and charge-carrier recombination dynamics. J. Phys. Chem. 98, 13669 (1994).

    Article  Google Scholar 

  7. M. Anpo, T. Shima, S. Kodama, and Y. Kubokawa: Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2: Size quantization effects and reaction intermediates. J. Phys. Chem. 91, 4305 (1987).

    Article  CAS  Google Scholar 

  8. C. Feldmann and H.O. Jungk: Polyol-vermittelte präparation nanoskaliger oxidpartikel. Angew. Chem. 113, 372 (2001).

    Article  Google Scholar 

  9. K.F. Yu, J.Z. Zhao, Y.P. Guo, X.F. Ding, H. Bala, Y.H. Liu, and Z.C. Wang: Sol-gel synthesis and hydrothermal processing of anatase nanocrystals from titanium n-butoxide. Mater. Lett. 59, 2515 (2005).

    Article  CAS  Google Scholar 

  10. S.Y. Huang, L. Kavan, I. Exnar, and M. Gratzel: Rocking chair lithium battery based on nanocrystalline TiO2 (anatase). J. Electrochem. Soc. 142, L142 (1995).

    Article  CAS  Google Scholar 

  11. G. Will, J.S.S.N. Rao, and D. Fitzmaurice: Heterosupramolecular optical write-read-erase device. J. Mater. Chem. 9, 2297 (1999).

    Article  CAS  Google Scholar 

  12. J. Sotomayor, G. Will, and D. Fitzmaurice: Photoelectrochromic heterosupramolecular assemblies. J. Mater. Chem. 10, 685 (2000).

    Article  CAS  Google Scholar 

  13. K.L. Frindell, M.H. Bartl, A. Popitsch, and G.D. Stucky: Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films. Angew. Chem. 114, 1001 (2002).

    Article  Google Scholar 

  14. P.W. Morrison, R. Raghavan, A.J. Timpone, C.P. Artelt, and S.E. Pratsinis: In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles. Chem. Mater. 9, 2702 (1997).

    Article  CAS  Google Scholar 

  15. G.X. Yang, H.R. Zhuang, and P. Biswas: Characterization and sinterability of nanophase titania particles processed in flame reactors. Nanostruct. Mater. 7, 675 (1996).

    Article  CAS  Google Scholar 

  16. S. Seifried, M. Winterer, and H. Hahn: Nanocrystalline titania films and particles by chemical vapor synthesis. Chem. Vap. Deposition 6, 239 (2000).

    Article  CAS  Google Scholar 

  17. S.T. Aruna, S. Tirosh, and A. Zaban: Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers. J. Mater. Chem. 10, 2388 (2000).

    Article  CAS  Google Scholar 

  18. H.M. Cheng, J.M. Ma, Z.G. Zhao, and L.M. Qi: Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 7, 663 (1995).

    Article  CAS  Google Scholar 

  19. K.M. Reddy, D. Guin, S.V. Manorama, and A.R. Reddy: Selective synthesis of nanosized TiO2 by hydrothermal route: Characterization, structure property relation, and photochemical application. J. Mater. Res. 19, 2567 (2004).

    Article  CAS  Google Scholar 

  20. K.M. Reddy, S.V. Manorama, and A.R. Reddy: Band gap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239 (2003).

    Article  Google Scholar 

  21. C.C. Wang and J.Y. Ying: Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 11, 3113 (1999).

    Article  CAS  Google Scholar 

  22. K.T. Lim, H.S. Hwang, W. Ryoo, and K.P. Johnston: Synthesis of TiO2 nanoparticles utilizing hydrated reverse micelles in CO2. Langmuir 20, 2466 (2004).

    Article  CAS  Google Scholar 

  23. J. Spatz, S. Mossmer, M. Moller, M. Kocher, D. Neher, and G. Wegner: Controlled mineralization and assembly of hydrolysis-based nanoparticles in organic solvents combining polymer micelles and microwave techniques. Adv. Mater. 10, 473 (1998).

    Article  CAS  Google Scholar 

  24. M. Niederberger, M.H. Bartl, and G.D. Stucky: Benzyl alcohol and titanium tetrachloride - a versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles. Chem. Mater. 14, 4364 (2002).

    Article  CAS  Google Scholar 

  25. T.J. Trentler, T.E. Denler, J.F. Bertone, A. Agrawal, and V.L. Colvin: Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J. Am. Chem. Soc. 121, 1613 (1999).

    Article  CAS  Google Scholar 

  26. A. Vioux: Nonhydrolytic sol-gel routes to oxides. Chem. Mater. 9, 2292 (1997).

    Article  CAS  Google Scholar 

  27. S. Cassaignon, M. Koelsch, and J-P. Jolivet: Selective synthesis of brookite, anatase and rutile nanoparticles: Thermolysis of TiCl4 in aqueous nitric acid. J. Mater. Sci. 42, 6689 (2007).

    Article  CAS  Google Scholar 

  28. T.A. Kandiel, A. Feldhoff, L. Robben, R. Dillert, and D.W. Bahnemann: Tailored titanium dioxide nanomaterials: Anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem. Mater. 22, 2050 (2010).

    Article  CAS  Google Scholar 

  29. M. Kobayashi, K. Tomita, V. Petrykin, M. Yoshimura, and M. Kakihana: Direct synthesis of brookite-type titanium oxide by hydrothermal method using water-soluble titanium complexes. J. Mater. Sci. 43, 2158 (2008).

    Article  CAS  Google Scholar 

  30. H. Lin, L. Li, M. Zhao, X. Huang, X. Chen, G. Li, and R. Yu: Synthesis of high-quality brookite TiO2 single-crystalline nanosheets with specific facets exposed: Tuning catalysts from inert to highly reactive. J. Am. Chem. Soc. 134, 8328 (2012).

    Article  CAS  Google Scholar 

  31. Y. Morishinia, M. Kobayashi, V. Petrykin, M. Kakihana, and K. Tomita: Microwave-assisted hydrothermal synthesis of brookite nanoparticles from a water-soluble titanium complex and their photocatalytic activity. J. Ceram. Soc. Jpn. 115, 826 (2007).

    Article  Google Scholar 

  32. N. Murakami, T.-A. Kamai, T. Tsubota, and T. Ohno: Novel hydrothermal preparation of pure brookite-type titanium(IV) oxide nanocrystal under strong acidic conditions. Catal. Commun. 10, 963 (2009).

    Article  CAS  Google Scholar 

  33. Y. Ohno, K. Tomita, Y. Komatsubara, T. Taniguchi, K-I. Katsumata, N. Matsushita, T. Kogure, and K. Okada: Pseudo-cube shaped brookite (TiO2) nanocrystals synthesized by an oleate-modified hydrothermal growth method. Cryst. Growth Des. 11, 4831 (2011).

    Article  CAS  Google Scholar 

  34. J. Tang, F. Redl, Y.M. Zhu, T. Siegrist, L.E. Brus, and M.L. Steigerwald: An organometallic synthesis of TiO2 nanoparticles. Nano Lett. 5, 543 (2005).

    Article  CAS  Google Scholar 

  35. X. Qiu, J.W. Thompson, and S.J.L. Billinge: PDFgetX2: A GUI-driven program to obtain the pair distribution function from x-ray powder diffraction data. J. Appl. Crystallogr. 37, 678 (2004).

    Article  CAS  Google Scholar 

  36. C.L. Farrow, P. Juhas, J.W. Liu, D. Bryndin, E.S. Božin, J. Bloch, T. Proffen, and S.J.L. Billinge: PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter 19, 335219 (2007).

    Article  CAS  Google Scholar 

  37. N.Y. Turova, E.P. Turevskaya, V.G. Kessler, and M.I. Yanovskaya: The Chemistry of Metal Alkoxides (Kluwer Academic Publishers, New York, NY, 2002); pp. 107–125.

    Google Scholar 

  38. N.A. Kotov, F.C. Meldrum, and J.H. Fendler: Monoparticulate layers of titanium dioxide nanocrystallites with controllable interparticle distances. J. Phys. Chem. 98, 8827 (1994).

    Article  CAS  Google Scholar 

  39. D.C. Hague and M.J. Mayo: Controlling crystallinity during processing of nanocrystalline titania. J. Am. Ceram. Soc. 77, 1957 (1994).

    Article  Google Scholar 

  40. W.E. Stallings and H.H. Lamb: Synthesis of nanostructured titania powders via hydrolysis of titanium isopropoxide in supercritical carbon dioxide. Langmuir 19, 2989 (2003).

    Article  CAS  Google Scholar 

  41. M. Koelsch, S. Cassaignon, J.F. Guillemoles, and J.R. Jolivet: Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol-gel method. Thin Solid Films 403, 312 (2002).

    Article  Google Scholar 

  42. M.A. Henderson: A surface science perspective on photocatalysis. Surf. Sci. Rep. 66, 185 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank P. Provencio for the HRTEM images, D. Overmeyer for the XRD data, and A. Boal for the NMR spectra. We also thank A.F. Emery, J.L. Crandall, and D.E. Fish for assistance in sample preparation. Funding was provided by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd C. Monson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monson, T.C., Rodriguez, M.A., Leger, J.L. et al. A simple low-cost synthesis of brookite TiO2 nanoparticles. Journal of Materials Research 28, 348–353 (2013). https://doi.org/10.1557/jmr.2012.358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.358

Navigation