Skip to main content
Log in

Dye-sensitized solar cells based on ZnO nanoneedle/TiO2 nanoparticle composite photoelectrodes with controllable weight ratio

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To possess the merits of both building blocks, i.e., the rapid interfacial electron transport of ZnO nanoneedles (NNs) and the high surface area of TiO2 nanoparticles (NPs), the ZnO NN and TiO2 NP composite photoelectrodes were prepared with controllable weight ratio. The dye-sensitized solar cell (DSSC) prototypes were fabricated based on this composite photoelectrodes, and the photoelectrical properties have been systematically studied. The results indicate that the composite cells achieve higher power conversion efficiency compared to pure TiO2 NP cells by rational tuning the weight ratio of ZnO NNs and TiO2 NPs. The DSSC with 1 wt% ZnO NNs yields the highest T) of 5.16%. It is elucidated by the interfacial electron transfer of DSSC with different weight of ZnO NNs using the electrochemical impedance spectra. And it is found that the DSSC with 1 wt% ZnO NNs displays the fastest interfacial electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
TABLE I.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. B. O’Regan and M. Gratzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).

    Google Scholar 

  2. A. Hagfeldt and M. Gratzel: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49 (1995).

    Article  CAS  Google Scholar 

  3. M.K. Nazeeruddin, A. Kay, I. Rodicicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Gratzel: Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxy-late)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc. 115, 6382 (1993).

    Article  CAS  Google Scholar 

  4. M. Grätzel: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42, 1788 (2009).

    Article  Google Scholar 

  5. S.A. Haque, E. Palomares, B.M. Cho, A.N.M. Green, N. Hirata, D.R. Klug, and J.R. Durrant: Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: The minimization of kinetic redundancy. J. Am. Chem. Soc. 127, 3456 (2005).

    Article  CAS  Google Scholar 

  6. A.B.F. Martinson, T.W. Hamann, M.J. Pellin, and J.T. Hupp: New architectures for dye-sensitized solar cells. Chem. Eur. J. 14, 4458 (2008).

    Article  CAS  Google Scholar 

  7. S.Y. Huang, G. Schlichthörl, A.J. Nozik, M. Gratzel, and A.J. Frank: Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 101, 2576 (1997).

    Article  CAS  Google Scholar 

  8. H. Qin, S. Wenger, M. Xu, F. Gao, X. Jing, P. Wang, S.M. Zakeeruddin, and M. Gratzel: An organic sensitizer with a fused dithienothiophene unit for efficient and stable dye-sensitized solar cells. J. Am. Chem. Soc. 130, 9202 (2008).

    Article  CAS  Google Scholar 

  9. M. Gratzel: Dye-sensitized solar cells. J. Photochem. Photobiol, C 4, 145 (2003).

    Article  CAS  Google Scholar 

  10. L.M. Peter: Characterization and modeling of dye-sensitized solar cells. J. Phys. Chem. C 111, 6601 (2007).

    Article  CAS  Google Scholar 

  11. S. Sodergren, A. Hagfeldt, J. Olsson, and S.E. Lindquist: Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelec-trochemical cells. J. Phys. Chem. 98, 5552 (1994).

    Article  Google Scholar 

  12. B.C. O’Regan, K. Bakker, J. Kroeze, H. Smit, P. Sommeling, and J.R. Durrant: Measuring charge transport from transient photo-voltage rise times. A new tool to investigate electron transport in nanoparticle films. J. Phys. Chem. B 110, 17155 (2006).

    Article  Google Scholar 

  13. J.B. Baxter and E.S. Aydil: Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 86, 053114 (2005).

    Article  Google Scholar 

  14. T.S. Kang, A.P. Smith, B.E. Taylor, and M.F. Durstock: Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett. 9, 601 (2009).

    Article  CAS  Google Scholar 

  15. L. De Marco, M. Manca, R. Giannuzzi, F. Malara, G. Melcarne, G. Ciccarella, I. Zama, R. Cingolani, and G. Gigli: Novel preparation method of TiO2-nanorod-based photoelectrodes for dye-sensitized solar cells with improved light-harvesting efficiency. J. Phys. Chem. C 114, 4228 (2010).

    Article  Google Scholar 

  16. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 (2005).

    Article  CAS  Google Scholar 

  17. S.T. Ho, C.L. Hsiao, H.Y. Lin, H.A. Chen, C.Y. Wang, and H.N. Lin: Single-crystalline zinc oxide nanowires as photoanode material for dye-sensitized solar cells. J. Nanosci. Nanotechnol. 10, 6473 (2010).

    Article  CAS  Google Scholar 

  18. M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P. Yang: ZnO—A12O3 and ZnO—TiO2 core—shell nanowire dye-sensitized solar cells. J. Phys. Chem. B 110, 22652 (2006).

    Article  CAS  Google Scholar 

  19. H.M. Cheng, W.H. Chiu, C.H. Lee, S.Y. Tsai, and W.F. Hsieh: Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications. J. Phys. Chem. C 112, 16359 (2008).

    Article  CAS  Google Scholar 

  20. Y. Lei, G. Zhao, M. Liu, Z. Zhang, X. Tong, and T. Cao: Fabrication, characterization and photoelectrocatalytic application of ZnO nanorods grafted on vertically aligned TiO2 nanotubes. J. Phys. Chem. C 113, 19067 (2009).

    Article  CAS  Google Scholar 

  21. B. Tan and Y. Wu: Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J. Phys. Chem. B 110, 15932 (2006).

    Article  CAS  Google Scholar 

  22. S. Pang, T. Xie, Y. Zhang, X. Wei, M. Yang, D. Wang, and Z. Du: Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells. J. Phys. Chem. C 111, 18417 (2007).

    Article  CAS  Google Scholar 

  23. W. Chen, Y.C. Qiu, and S.H. Yang: A new ZnO nanotetrapods/ SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Phys. Chem.Chem. Phys. 12, 9494 (2010).

    Article  CAS  Google Scholar 

  24. Z. Liu, K. Pan, Q. Zhang, R. Jia, Q. Lv, D. Wang, Y. Bai, and T. Li: The performances of the mercurochrome-sensitized composite semiconductor photoelectrochemical cells based on TiO2/SnO2 and ZnO/SnO2 composites. Thin Solid Films 468, 291 (2004).

    Article  CAS  Google Scholar 

  25. A. Hagfeldt and M. Gratzel: Molecular photovoltaics. Ace. Chem. Res. 33, 269 (2000).

    Article  CAS  Google Scholar 

  26. M. Yanagida, T. Yamaguchi, M. Kurashige, K. Hara, R. Katoh, H. Sugihara, and H. Arakawa: Panchromatic sensitization of nanocrystalline TiO2 with cis-bis(4-carboxy-2-[2’-(4’-carboxypyridyl)] quinoline)bis(thiocyanato-N)rutheni-um(II). Inorg. Chem. 42, 7921 (2003).

    Article  CAS  Google Scholar 

  27. F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S.M. Zakeeruddin, and M. Gratzel: Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J. Phys. Chem. C 111, 6550 (2007).

    Article  CAS  Google Scholar 

  28. C. Longo, A.F. Nogueira, M.A. De Paoli, and H. Cachet: Solid-state and flexible dye-sensitized TiO2 solar cells: A study by electrochemical impedance spectroscopy. J. Phys. Chem. B 106, 5925 (2002).

    Article  CAS  Google Scholar 

  29. J. Qu, X.P. Gao, G.R. Li, Q.W. Jiang, and T.Y. Yan: Structure transformation and photoelectrochemical properties of TiO2 nano-materials calcined from titanate nanotubes. J. Phys. Chem. C 113, 3359 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The National Natural Science Foundation of China (Grant No. 51072038), NECT, Outstanding Youth Foundation of Heilongjiang Province (Grant No. JC201008), Natural Science Foundation of Heilongjiang Province, China (Grant No. F200828), the Fundamental Research Fund of Harbin Engineering University (Grant No. HEUFT07056) have supported this work. We are grateful to Y. Qu and K. Pan for technical support and helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Qi.

Additional information

Address all correspondence to this author

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, L., Wang, Q., Wang, T. et al. Dye-sensitized solar cells based on ZnO nanoneedle/TiO2 nanoparticle composite photoelectrodes with controllable weight ratio. Journal of Materials Research 27, 2982–2987 (2012). https://doi.org/10.1557/jmr.2012.350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.350

Navigation