Abstract
To possess the merits of both building blocks, i.e., the rapid interfacial electron transport of ZnO nanoneedles (NNs) and the high surface area of TiO2 nanoparticles (NPs), the ZnO NN and TiO2 NP composite photoelectrodes were prepared with controllable weight ratio. The dye-sensitized solar cell (DSSC) prototypes were fabricated based on this composite photoelectrodes, and the photoelectrical properties have been systematically studied. The results indicate that the composite cells achieve higher power conversion efficiency compared to pure TiO2 NP cells by rational tuning the weight ratio of ZnO NNs and TiO2 NPs. The DSSC with 1 wt% ZnO NNs yields the highest T) of 5.16%. It is elucidated by the interfacial electron transfer of DSSC with different weight of ZnO NNs using the electrochemical impedance spectra. And it is found that the DSSC with 1 wt% ZnO NNs displays the fastest interfacial electron transfer.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
B. O’Regan and M. Gratzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).
A. Hagfeldt and M. Gratzel: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49 (1995).
M.K. Nazeeruddin, A. Kay, I. Rodicicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Gratzel: Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxy-late)ruthenium(II) charge-transfer sensitizers (X = Cl−, Br−, I−, CN−, and SCN−) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc. 115, 6382 (1993).
M. Grätzel: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42, 1788 (2009).
S.A. Haque, E. Palomares, B.M. Cho, A.N.M. Green, N. Hirata, D.R. Klug, and J.R. Durrant: Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: The minimization of kinetic redundancy. J. Am. Chem. Soc. 127, 3456 (2005).
A.B.F. Martinson, T.W. Hamann, M.J. Pellin, and J.T. Hupp: New architectures for dye-sensitized solar cells. Chem. Eur. J. 14, 4458 (2008).
S.Y. Huang, G. Schlichthörl, A.J. Nozik, M. Gratzel, and A.J. Frank: Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 101, 2576 (1997).
H. Qin, S. Wenger, M. Xu, F. Gao, X. Jing, P. Wang, S.M. Zakeeruddin, and M. Gratzel: An organic sensitizer with a fused dithienothiophene unit for efficient and stable dye-sensitized solar cells. J. Am. Chem. Soc. 130, 9202 (2008).
M. Gratzel: Dye-sensitized solar cells. J. Photochem. Photobiol, C 4, 145 (2003).
L.M. Peter: Characterization and modeling of dye-sensitized solar cells. J. Phys. Chem. C 111, 6601 (2007).
S. Sodergren, A. Hagfeldt, J. Olsson, and S.E. Lindquist: Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelec-trochemical cells. J. Phys. Chem. 98, 5552 (1994).
B.C. O’Regan, K. Bakker, J. Kroeze, H. Smit, P. Sommeling, and J.R. Durrant: Measuring charge transport from transient photo-voltage rise times. A new tool to investigate electron transport in nanoparticle films. J. Phys. Chem. B 110, 17155 (2006).
J.B. Baxter and E.S. Aydil: Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 86, 053114 (2005).
T.S. Kang, A.P. Smith, B.E. Taylor, and M.F. Durstock: Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett. 9, 601 (2009).
L. De Marco, M. Manca, R. Giannuzzi, F. Malara, G. Melcarne, G. Ciccarella, I. Zama, R. Cingolani, and G. Gigli: Novel preparation method of TiO2-nanorod-based photoelectrodes for dye-sensitized solar cells with improved light-harvesting efficiency. J. Phys. Chem. C 114, 4228 (2010).
M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 (2005).
S.T. Ho, C.L. Hsiao, H.Y. Lin, H.A. Chen, C.Y. Wang, and H.N. Lin: Single-crystalline zinc oxide nanowires as photoanode material for dye-sensitized solar cells. J. Nanosci. Nanotechnol. 10, 6473 (2010).
M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P. Yang: ZnO—A12O3 and ZnO—TiO2 core—shell nanowire dye-sensitized solar cells. J. Phys. Chem. B 110, 22652 (2006).
H.M. Cheng, W.H. Chiu, C.H. Lee, S.Y. Tsai, and W.F. Hsieh: Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications. J. Phys. Chem. C 112, 16359 (2008).
Y. Lei, G. Zhao, M. Liu, Z. Zhang, X. Tong, and T. Cao: Fabrication, characterization and photoelectrocatalytic application of ZnO nanorods grafted on vertically aligned TiO2 nanotubes. J. Phys. Chem. C 113, 19067 (2009).
B. Tan and Y. Wu: Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J. Phys. Chem. B 110, 15932 (2006).
S. Pang, T. Xie, Y. Zhang, X. Wei, M. Yang, D. Wang, and Z. Du: Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells. J. Phys. Chem. C 111, 18417 (2007).
W. Chen, Y.C. Qiu, and S.H. Yang: A new ZnO nanotetrapods/ SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Phys. Chem.Chem. Phys. 12, 9494 (2010).
Z. Liu, K. Pan, Q. Zhang, R. Jia, Q. Lv, D. Wang, Y. Bai, and T. Li: The performances of the mercurochrome-sensitized composite semiconductor photoelectrochemical cells based on TiO2/SnO2 and ZnO/SnO2 composites. Thin Solid Films 468, 291 (2004).
A. Hagfeldt and M. Gratzel: Molecular photovoltaics. Ace. Chem. Res. 33, 269 (2000).
M. Yanagida, T. Yamaguchi, M. Kurashige, K. Hara, R. Katoh, H. Sugihara, and H. Arakawa: Panchromatic sensitization of nanocrystalline TiO2 with cis-bis(4-carboxy-2-[2’-(4’-carboxypyridyl)] quinoline)bis(thiocyanato-N)rutheni-um(II). Inorg. Chem. 42, 7921 (2003).
F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S.M. Zakeeruddin, and M. Gratzel: Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J. Phys. Chem. C 111, 6550 (2007).
C. Longo, A.F. Nogueira, M.A. De Paoli, and H. Cachet: Solid-state and flexible dye-sensitized TiO2 solar cells: A study by electrochemical impedance spectroscopy. J. Phys. Chem. B 106, 5925 (2002).
J. Qu, X.P. Gao, G.R. Li, Q.W. Jiang, and T.Y. Yan: Structure transformation and photoelectrochemical properties of TiO2 nano-materials calcined from titanate nanotubes. J. Phys. Chem. C 113, 3359 (2009).
Acknowledgment
The National Natural Science Foundation of China (Grant No. 51072038), NECT, Outstanding Youth Foundation of Heilongjiang Province (Grant No. JC201008), Natural Science Foundation of Heilongjiang Province, China (Grant No. F200828), the Fundamental Research Fund of Harbin Engineering University (Grant No. HEUFT07056) have supported this work. We are grateful to Y. Qu and K. Pan for technical support and helpful discussion.
Author information
Authors and Affiliations
Corresponding author
Additional information
Address all correspondence to this author
Rights and permissions
About this article
Cite this article
Qi, L., Wang, Q., Wang, T. et al. Dye-sensitized solar cells based on ZnO nanoneedle/TiO2 nanoparticle composite photoelectrodes with controllable weight ratio. Journal of Materials Research 27, 2982–2987 (2012). https://doi.org/10.1557/jmr.2012.350
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2012.350