Skip to main content
Log in

Impact of low viscosity ionic liquid on PMMA-PVC-LiTFSI polymer electrolytes based on AC -impedance, dielectric behavior, and HATR-FTIR characteristics

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The preparation of l-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmlmTFSI)-based poly(methyl methacrylate)-poly(vinyl chloride), PMMA-PVC, gel polymer electrolytes was done by solution casting technique. The ionic conductivity of gel polymer electrolytes was increased, up to a maximum value of (1.64 ± 0.01) x 10−4 S/cm by adding 60 wt% of BmlmTFSI. Conductivity-frequency dependence, dielectric relaxation, and dielectric moduli formalism were also further analyzed. These studies assert the ionic transportation mechanisms in the polymer matrix. Occurrence of polarization electrode-electrolyte interface is also observed. This leads to the formation of electrical double layer and hence indicates the non-Debye characteristic of the polymer matrix in the dielectric studies. Based on the changes in shift, changes in intensity, changes in shape, and existence of new peaks, attenuated total reflectance-Fourier transform infrared divulged the complexation between PMMA, PVC, lithium bis(trifluoromethanesulfonyl)imide, and BmlmTFSI, as shown in the infrared spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I.
FIG. 1.
TABLE II.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
Table III.
FIG. 8.
FIG. 9.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. S. Ramesh and C-W. Liew: Tailor-made fumed silica-based nano-composite polymer electrolytes consisting of BmlmTFSI ionic liquid. Iran. Polym. J. 21, 273–281 (2012).

    Article  CAS  Google Scholar 

  2. C. Sirisopanaporn, A. Fernicola, and B. Scrosati: New, ionic liquid-based membranes for lithium battery application. J. Power Sources 186, 490–495 (2009).

    Article  CAS  Google Scholar 

  3. A. Vioux, L. Viau, S. Volland, and J.L. Bideau: Use of ionic liquid in sol-gel; ionogels and applications. C.R. Chim. 13, 242–255 (2010).

    Article  CAS  Google Scholar 

  4. S. Ramesh, C-W. Liew, and K. Ramesh: Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes. J. Non-Cryst. Solids 357, 2132–2138 (2011).

    Article  CAS  Google Scholar 

  5. H. Cheng, C. Zhu, B. Huang, M. Lu, and Y. Yang: Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids. Electrochim. Acta 52, 5789–5794 (2007).

    Article  CAS  Google Scholar 

  6. S.S. Sekhon, P. Krishnan, B. Singh, K. Yamada, and C.S. Kim: Proton conducting membrane containing room temperature ionic liquid. Electrochim. Acta 52, 1639–1644 (2006).

    Article  CAS  Google Scholar 

  7. R. Marcilla, F. Alcaide, H. Sardon, J.A. Pomposo, C.P. Gonzalo, and D. Mecerreyes: Tailor-made polymer electrolytes based upon ionic liquids and their application in all-phase electrochromic devices. Electrochem. Commun. 8, 482–488 (2006).

    Article  CAS  Google Scholar 

  8. N. Jain, A. Kumar, S. Chauhan, and S.M.S. Chauhan: Chemical and biochemical transformations in ionic liquids. Tetrahedron 61, 1015–1060 (2005).

    Article  CAS  Google Scholar 

  9. K.S. Kim, S.Y. Park, S. Choi, and H. Lee: Ionic liquid-polymer gel electrolytes based on morpholinium salt and PVdF(HFP) copolymer. J. Power Sources 155, 385–390 (2006).

    Article  CAS  Google Scholar 

  10. J. Reiter, J. Vondrak, J. Michalek, and Z. Micka: Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents. Electrochim. Acta 52, 1389–1408 (2006).

    Article  Google Scholar 

  11. J.H. Shin, W.A. Henderson, and S. Passerini: Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem. Commun. 5, 1016–1020 (2003).

    Article  CAS  Google Scholar 

  12. P.K. Singh, K.W. Kim, N.G. Park, and H.W. Rhee: Mesoporous nanocrystalline TiO2 electrode with ionic liquid-based solid polymer electrolyte for dye-sensitized solar cell application. Synth. Met. 158, 590–593 (2008).

    Article  CAS  Google Scholar 

  13. S. Ramesh, C-W. Liew, and A.K. Arof: Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J. Non-Cryst. Solids 357, 3654–3660 (2011).

    Article  CAS  Google Scholar 

  14. D.P. Almond, A.R. West, and R.J. Grant: Temperature dependence of the A.C. conductivity of Na β-alumina. Solid State Commun. 44, 1277–1280 (1982).

    Article  CAS  Google Scholar 

  15. A.S.A. Khiar, R. Puteh, and A.K. Arof: Conductivity studies of a chitosan-based polymer electrolyte. J. Phys. Condens. Matter 373, 23–27 (2006).

    CAS  Google Scholar 

  16. S. Ramesh and C-W. Liew: Exploration on nano-composite fumed silica-based composite polymer electrolytes with doping of ionic liquid. J. Non-Cryst. Solids 358, 931–940 (2012).

    Article  CAS  Google Scholar 

  17. N. Mehta, D. Kumar, S. Kumar, and A. Kumar: Applicability of CBH model in the A.C. conductivity study of glassy Se100-xInx alloys. Chalcogenide Lett. 2, 103–109 (2005).

    Google Scholar 

  18. S. Rajendran, M. Sivakumar, and R. Subadevi: Investigations on the effect of the various plasticizers in PVA-PMMA solid polymer blend electrolytes. Mater. Lett. 58, 641–649 (2004).

    Article  CAS  Google Scholar 

  19. R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura, and T. Hattori: Ac impedance, DSC and FT-IR investigations on (x) PVAc-(1-x)PVdF blends with LiCl04. Mater. Chem. Phys. 98, 55–61 (2006).

    Article  CAS  Google Scholar 

  20. H. Eliasson, I. Albinsson, and B-E. Mellander: Conductivity and dielectric properties of AgCF3SO3-PPG. Mater. Res. Bull. 35, 1053–1065 (2000).

    Article  CAS  Google Scholar 

  21. S. Ramesh and M.F. Chai: Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinyl chloride)-lithium triflate polymer electrolytes. Mater. Sci. Eng., B 139, 240–245 (2007).

    Article  CAS  Google Scholar 

  22. M.C.R. Shastry and K.J. Rao: Ac conductivity and dielectric relaxation studies in Agl-based fast ion conducting glasses. Solid State Ionics 44, 187–198 (1991).

    Article  CAS  Google Scholar 

  23. S.A. Suthanthiraraj, D.J. Sheeba, and B.J. Paul: Impact of ethylene carbonate on ion transport characteristics of PVdF-AgCF3S03 polymer electrolyte system. Mater. Res. Bull. 44, 1534–1539 (2009).

    Article  Google Scholar 

  24. S. Rajendran, O. Mahendran, and R. Kannan: Characterisation of [(1-x) PMMA-x PVdF] polymer blend electrolyte with Li ion. Fuel 81, 1077–1081 (2002).

    Article  CAS  Google Scholar 

  25. V.B. Achari, T.J.R. Reddy, A.K. Sharma, and V.V.R.N. Rao: Electrical, optical, and structural characterization of polymer blend (PVC/PMMA) electrolyte films. Ionics 13, 349–354 (2007).

    Article  CAS  Google Scholar 

  26. J. Jiang, D. Gao, Z. Li, and G. Su: Gel polymer electrolytes prepared by in situ polymerization of vinyl monomers in room-temperature ionic liquids. React. Funct. Polym. 66, 1141–1148 (2006).

    Article  CAS  Google Scholar 

  27. S. Rajendran and P. Sivakumar: An investigation of PVdF/PVC-based blend electrolytes with EC/PC as plasticizers in lithium battery applications. J. Phys. Condens. Matter 403, 509–516 (2008).

    CAS  Google Scholar 

  28. S. Ahmad, M. Deepa, and S.A. Agnihotry: Effect of salts on the fumed silica-based composite polymer electrolytes. Sol. Energy Mater. Sol Cells 92, 184–189 (2008).

    Article  CAS  Google Scholar 

  29. F.F.C. Bazito, L.T. Silveira, R.M. Torresi, and S.T.C. Torresi: Spectroelectrochemical study of a soluble derivative of poly (aniline) in a room temperature ionic liquid. Electrochim. Acta 53, 1217–1224 (2007).

    Article  CAS  Google Scholar 

  30. S. Ramesh and S-C. Lu: Effect of nanosized silica in poly(methyl methacrylate)-lithium bis(trifiuoromethanesulfonyl) imide based polymer electrolytes. J. Power Sources 185 1439–1443 (2008).

    Article  CAS  Google Scholar 

  31. W. Li, M. Yuan, and M. Yang: Dual-phase polymer electrolyte with enhanced phase compatibility based on Poly(MMA-g-PVC)/PMMA. Eur. Polym. J. 42, 1396–1402 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Exploratory Research Grant Scheme (ERGS: ER017-2011A) and Universiti Malaya Research Grant (UMRG: RG140-11AFR). One of the co-author gratefully acknowledges the “Skim Bright Sparks University Malaya (SBSUM)” for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liew, CW., Ramesh, S. & Durairaj, R. Impact of low viscosity ionic liquid on PMMA-PVC-LiTFSI polymer electrolytes based on AC -impedance, dielectric behavior, and HATR-FTIR characteristics. Journal of Materials Research 27, 2996–3004 (2012). https://doi.org/10.1557/jmr.2012.343

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.343

Navigation