Skip to main content

Advertisement

Log in

Polyurethane foam/silica chemical hybrids for shape memory effects

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The isocyanate-functionalized silica nanoparticles were chemically incorporated into the polyurethane (PU) during the synthesis of flexible PU foam from polypropylene glycol and toluene diisocyanate following the one-shot method with water as the blowing agent. Chemical incorporations of silica nanoparticles augmented hardness, initial modulus, and strength for tensile and compression loading. As results, shape fixity, shape recovery, and strain energy storage significantly increased with reduced hysteresis loss. It was found that the chemically incorporated silica particles effectively reinforce the PUs with improved dispersion and act as multifunctional cross-links, elastic energy storage, and relaxation retarder, which are beyond the conventional reinforcing filler. The maximum increases of dynamic properties and shape memory performances with 2% silica are an indication that the chemical incorporation is also limited by particle aggregations, though it appears at higher content than the simple blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

SCHEME 1
TABLE I
FIG. 1
FIG. 2
TABLE II
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

REFERENCES

  1. S.A. Madbouly and A. Lendlein: Shape-memory polymer composites. Adv. Polym. Sci. 226, 41 (2010).

    Article  CAS  Google Scholar 

  2. C.M. Huang, K.H. Wei, U.S. Jeng, and H.S. Sheu: Pseudo-single-crystalline self-assembled structure formed from hydrophilic CdSe and hydrophobic Au nanoparticles in the polystyrene and poly(4-vinylpyridine) blocks, respectively, of a polystyrene-b-poly(4-vinylpyridine) diblock copolymer. Macromolecules 41, 6876 (2008).

    Article  CAS  Google Scholar 

  3. W.F. Chen, J.S. Wu, and P-L. Kuo: Poly(oxyalkylene)diamine-functionalized carbon nanotube/perfluorosulfonated polymer composites: Synthesis, water state, and conductivity. Chem. Mater. 20, 5756 (2008).

    Article  CAS  Google Scholar 

  4. Y. Okumura, C. Oi, W. Sakamoto, and T. Yogo: Synthesis of SrTiO3 nanoparticle/polymer composite film using direct current field. J. Mater. Res. 23, 127 (2008).

    Article  CAS  Google Scholar 

  5. M.J. Lance, C-H. Hsueh, I.N. Ivanov, and D.B. Geohegan: Reorientation of carbon nanotubes in polymer matrix composites using compressive loading. J. Mater. Res. 20, 1026 (2005).

    Article  CAS  Google Scholar 

  6. A. Kelly: Composites in context. Compos. Sci. Technol. 23, 171 (1985).

    Article  Google Scholar 

  7. E.T. Thostenson, C. Li, and T.W. Chou: Nanocomposites in context. Compos. Sci. Technol. 65, 491 (2005).

    Article  CAS  Google Scholar 

  8. Q. Fabrizio, S. Loredana, and S.E. Anna: Shape memory epoxy foams for space applications. Mater. Lett. 69, 20 (2012).

    Article  CAS  Google Scholar 

  9. M.K. Jang, A. Hartwig, and B.K. Kim: Shape memory polyurethanes cross-linked by surface modified silica particles. J. Mater. Chem. 19, 1166 (2009).

    Article  CAS  Google Scholar 

  10. D.H. Jung, H.M. Jeong, and B.K. Kim: Organic–inorganic chemical hybrids having shape memory effect. J. Mater. Chem. 20, 3458 (2010).

    Article  CAS  Google Scholar 

  11. C.Y. Bae, J.H. Park, E.Y. Kim, Y.S. Kang, and B.K. Kim: Organic–inorganic nanocomposite bilayers with triple shape memory effect. J. Mater. Chem. 21, 11288 (2011).

    Article  CAS  Google Scholar 

  12. S.H. Lee, J.W. Kim, and B.K. Kim: Shape memory polyurethanes having crosslinks in soft and hard segments. Smart Mater. Struct. 13, 1345 (2004).

    Article  CAS  Google Scholar 

  13. A. Aneja and G.L. Wilkes: On the issue of urea phase connectivity in formulations based on molded flexible polyurethane foams. J. Appl. Polym. Sci. 85, 2956 (2002).

    Article  CAS  Google Scholar 

  14. B.D. Kaushiva and G.L. Wilkes: Uniaxial orientation behavior and consideration of the geometric anisotropy of polyurea hard domain structure in flexible polyurethane foams. Polymer 41, 6987 (2000).

    Article  CAS  Google Scholar 

  15. B.D. Kaushiva, S.R. McCartney, G.R. Rossny, and G.L. Wilkes: Surfactant level influences on structure and properties of flexible slabstock polyurethane foams. Polymer 41, 285 (2000).

    Article  CAS  Google Scholar 

  16. N.M.K. Lamba, K.A. Woodhouse, and S.L. Cooper: Polyurethanes in Biomedical Applications (CRC Press, Boston, MA, 1998).

    Google Scholar 

  17. R. Neff, A. Adedeji, C.W. Macosko, and A.J. Ryan: Urea hard segment morphology in flexible polyurethane foam. J. Polym. Sci., Part B: Polym. Phys. 36, 573 (1998).

    Article  CAS  Google Scholar 

  18. H. Tobushi, K. Okumura, M. Endo, and S. Hayashi: Thermomechanical properties of polyurethane-shape memory polymer foam. J. Intell. Mater. Syst. Struct. 12, 283 (2001).

    Article  CAS  Google Scholar 

  19. H. Tobushi, R. Matsui, S. Hayashi, and D. Shimada: The influence of shape-holding conditions on shape recovery of polyurethane-shape memory polymer foams. Smart Mater. Struct. 13, 881 (2004).

    Article  CAS  Google Scholar 

  20. C. Liu, H. Qin, and P.T. Mather: Review of progress in shape-memory polymers J. Mater. Chem. 17, 1543 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea grant funded by the Korean government through GCRC-SOP (Grant No. 2011-0030668).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M.J. Kim or B.K. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, S., Kim, M., Kwon, S. et al. Polyurethane foam/silica chemical hybrids for shape memory effects. Journal of Materials Research 27, 2837–2843 (2012). https://doi.org/10.1557/jmr.2012.334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.334

Navigation