Skip to main content
Log in

Soluble silicon nanoparticles–polyaniline capsules for biosensing and imaging

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We used miniemulsion to synthesize novel water-soluble dispersion of nanocapsules with a polyaniline (PANI) shell and luminescent ultrasmall Si nanoparticle core with diameters of 50–300 nm. The capsules are functionalized with aromatic sulfonic acid. The capsules may be reconstituted in thin films or structured surfaces. The stability of the luminescence and dispersion of the capsules is studied under a wide range of pH conditions. The multiplicity of nanoparticles in the core provides highly amplified and reproducible signal for luminescence-based imaging using standard fluorescence microscopy, while the PANI shell allows a variety of routes for functionalization as well as electrical interrogation, which enables a wide range of biosensing/imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. He, C. Fan, and S.T. Lee: Silicon nanostructures for bioapplications. Nanotoday 5, 282 (2010).

    Article  CAS  Google Scholar 

  2. F. Erogbogbo, K.T. Yong, I. Roy, G. Xu, P.N. Prasad, and M.T. Swihart: Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2, 873 (2008).

    Article  CAS  Google Scholar 

  3. M.H. Nayfeh and L. Mitas: Silicon nanoparticles: New photonic and electronic material at the transition between solid and molecule, in Nanosilicon, edited by V. Kumar (Elsevier, Amsterdam, The Netherlands, 2008); pp. 1–78.

    Google Scholar 

  4. D.S. English, L.E. Pell, Z. Yu, P.F. Barbara, and B.A. Korgel: Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrystal quantum dots. Nano Lett. 2, 681 (2002).

    Article  CAS  Google Scholar 

  5. M. Nayfeh, E. Rogozhina, and L. Mitas: Silicon nanoparticles: Next generation of ultrasensitive fluorescent markers, in Synthesis, Functionalization, and Surface Treatment of Nanoparticles, edited by M.-I. Baratron (American Scientific Publishers, Stevenson Ranch, CA, 2002); pp. 1–59.

    Google Scholar 

  6. G. Belomoin, J. Therrien, A. Smith, S. Rao, S. Chaieb, and M.H. Nayfeh: Observation of a magic discrete family of ultrabright Si nanoparticles. Appl. Phys. Lett. 80, 841 (2002).

    Article  CAS  Google Scholar 

  7. D. Nielsen, L. Abuhassan, M. Alchihabi, A. Al-Muhanna, J. Host, and M.H. Nayfeh: Current-less anodization of intrinsic silicon powder grains: Formation of fluorescent Si nanoparticles. J. Appl. Phys. 101, 114302 (2007).

    Article  Google Scholar 

  8. O. Ackakir, J. Therrien, G. Belomoin, N. Barry, J. Muller, E. Gratton, and M.H. Nayfeh: Detection of luminescent single ultrasmall silicon nanoparticle using fluctuation spectroscopy. Appl. Phys. Lett. 76, 1857 (2000).

    Article  Google Scholar 

  9. M.H. Nayfeh, J. Therrien, G. Belomoin, O. Akcakir, N. Barry, and E. Gratton: Stimulated blue emission and second harmonic generation from films of ultrasmall Si nanoparticles, in Microcrystalline and Nanocrystalline Semiconductors—2000, edited by P.M. Fauchet, J.M. Buriak, L.T. Canham, N. Koshida, and B.E. White Jr. (Mater. Res. Soc. Symp. Proc. 638, Warrendale, PA, 2001); p. F9.5.

    Google Scholar 

  10. M. Nayfeh, O. Akcakir, G. Belomoin, N. Barry, J. Therrien, and E. Gratton: Second harmonic generation in microcrystallite films of ultrasmall Si nanoparticles. Appl. Phys. Lett. 77, 4086 (2000).

    Article  CAS  Google Scholar 

  11. G. Wang, K. Mantey, M.H. Nayfeh, and S.T. Yau: Enhanced amperometric detection of glucose using Si-29 particles. Appl. Phys. Lett. 89, 243901 (2006).

    Article  Google Scholar 

  12. G. Wang, S.T. Yau, K. Mantey, and M.H. Nayfeh: Fluorescent Si nanoparticle-based electrode for sensing biomedical substances. Opt. Commun. 281, 1765 (2008).

    Article  CAS  Google Scholar 

  13. Q. Liu, M.H. Nayfeh, and S.T. Yau: A silicon nanoparticle-based polymeric nano-composite material for glucose sensing. J. Electroanal. Chem. 657, 172 (2011).

    Article  CAS  Google Scholar 

  14. K. Mantey, M. Kwit, M.H. Nayfeh, A. Kumar, L.D. Stephenson, and A.J. Nelson: Measurement of the photostability of silicon nanoparticles under UVA and near infrared irradiation. J. Appl. Phys. 107, 064316 (2010).

    Article  Google Scholar 

  15. K. Mantey, M.H. Nayfeh, B. Al-Hreish, J. Boparai, A. Kumar, L.D. Stephenson, A.J. Nelson, S.A. Alrokayan, and K.M. Abu-Salah: Silicon nanoparticle-functionalized fiberglass pads for sampling. J. Appl. Phys. 109, 064321 (2011).

    Article  Google Scholar 

  16. E. Rogozhina, G. Belomoin, A. Smith, L. Abuhassan, N. Barry, O. Akcakir, P.V. Braun, and M.H. Nayfeh: Si-N linkage in ultrabright, ultrasmall Si nanoparticles. Appl. Phys. Lett. 78, 3711 (2001).

    Article  CAS  Google Scholar 

  17. G. Belomoin, E. Rogozhina, J. Therrien, P.V. Braun, L. Abuhassan, M.H. Nayfeh, L. Wagner, and L. Mitas: Effect of surface termination on the band gap of ultrabright Si29 nanoparticles: Experiments and computational models. Phys. Rev. B 65, 193406 (2002).

    Article  Google Scholar 

  18. A.J. Heeger: Semiconducting metallic polymers: Fourth generation polymeric materials. Angew. Chem. Int. Ed. 40, 2591 (2001).

    Article  CAS  Google Scholar 

  19. A.G. Green and A.E. Woodhead: Aniline black and allied compounds. J. Chem. Soc. 97, 2388 (1910).

    Article  Google Scholar 

  20. A.A. Syed and M.K. Dinesan: Polyaniline-A novel polymeric material. Talanta 38, 815 (1991).

    Article  CAS  Google Scholar 

  21. P. Banerjee: Carboxymethylcellulose stabilized polyaniline dispersions and conducting copolymer latex composites. Eur. Polym. J. 34, 841 (1998).

    Article  CAS  Google Scholar 

  22. D. Chattopadhyay and B.M. Mandal: Methyl cellulose stabilized polyaniline dispersions. Langmuir 12, 1585 (1996).

    Article  CAS  Google Scholar 

  23. J. Stejskal and P. Kratochvil: Polyaniline dispersions. 5. Poly(vinyl alcohol) and poly(N-vinylpyrrolidone) as steric stabilizers. Langmuir 12, 3389 (1996).

    Article  CAS  Google Scholar 

  24. P. Banerjee, S.N. Bhattacharyya, and B.M. Mandal: Poly(vinyl methyl-ether) stabilized colloidal polyaniline dispersions. Langmuir 11, 2414 (1995).

    Article  CAS  Google Scholar 

  25. E.C. Cooper and B. Vincent: Electrically conducting organic films and beads based on conducting latex particles. J. Phys. D: Appl. Phys. 22, 1580 (1989).

    Article  CAS  Google Scholar 

  26. S.P. Armes, M. Aldissi, S. Agnew, and S. Gottesfeld: Aqueous colloidal dispersions of polyaniline formed by using poly(vinylpyridine)-based steric stabilizers. Langmuir 6, 1745 (1990).

    Article  CAS  Google Scholar 

  27. S.H. Lee, D.H. Lee, K. Lee, and C.W. Lee: High-performance polyaniline prepared via polymerization in a self-stabilized dispersion. Adv. Funct. Mater. 15, 1495 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge NSF Grant OISE 11-03-398.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munir H. Nayfeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elhalawany, N., Maximenko, Y., Yamani, Z. et al. Soluble silicon nanoparticles–polyaniline capsules for biosensing and imaging. Journal of Materials Research 28, 210–215 (2013). https://doi.org/10.1557/jmr.2012.325

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.325

Navigation