Skip to main content

Advertisement

Log in

Biosynthesis and adhesion of gold nanoparticles for breast cancer detection and treatment

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) were biosynthesized using Bacillus megaterium, a common soil bacterium. Transmission electron microscopy images revealed that well-developed, spherical, homogeneous nanoparticles are formed extracellularly in reactions containing aqueous chloroaurate ions and conditioned medium at pH 4. Atomic force microscopy measurements showed that adhesion forces between biosynthesized AuNPs and breast cancer cells were almost six times greater than adhesion forces between biosynthesized AuNPs and normal breast cells. Furthermore, adhesion forces of biosynthesized AuNPs to breast cancer cells were three times greater than adhesion forces between chemically synthesized AuNPs and the same breast cancer cells. Finally, adhesion forces between biosynthesized AuNPs conjugated to breast-specific antibodies (AuNP-Ab conjugates), and breast cancer cells were almost five times greater than adhesion forces between unconjugated AuNPs and breast cancer cells. The implications of the results are discussed for the development of nanostructures for the targeted detection and treatment of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
TABLE I

Similar content being viewed by others

REFERENCES

  1. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M.J. Thun: Cancer statistics, 2009. CA Cancer J. Clin. 59, 225 (2009).

    Article  Google Scholar 

  2. J. Meng, J. Fan, G. Galiana, R.T. Branca, P.L. Clasen, S. Ma, J. Zhou, C. Leuschner, C.S.S.R. Kumar, J. Hormes, T. Otiti, A.C. Beye, M.P. Harmer, C.J. Kiely, W. Warren, M.P. Haataja, and W.O. Soboyejo: LHRH-functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI. Mater. Sci. Eng., C 29, 1467 (2009).

    Article  CAS  Google Scholar 

  3. T. Tanaka, P. Decuzzi, M. Cristofanilli, J.H. Sakamoto, E. Tasciotti, F.M. Robertson, and M. Ferrari: Nanotechnology for breast cancer therapy. Biomed. Microdevices 11, 49 (2009).

    Article  CAS  Google Scholar 

  4. X. Huang, I.H. El-Sayed, W. Qian, and M.A. El-Sayed: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115 (2006).

    Article  CAS  Google Scholar 

  5. I.H. El-Sayed, X. Huang, and M.A. El-Sayed: Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129 (2006).

    Article  CAS  Google Scholar 

  6. R. Bhattacharya, C.R. Patra, A. Earl, S. Wang, A. Katarya, L. Lu, J.N. Kizhakkedathu, M.J. Yaszemski, P.R. Greipp, D. Mukhopadhyay, and P. Mukherjee: Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells. Nanomed. Nanotechnol. Biol. Med. 3, 224 (2007).

    Article  CAS  Google Scholar 

  7. P. Mulvaney, J.M. Perera, S. Biggs, F. Grieser, and G.W. Stevens: The direct measurement of the forces of interaction between a colloid particle and an oil droplet. J. Colloid Interface Sci. 183, 614 (1996).

    Article  CAS  Google Scholar 

  8. R. Weissleder: A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316 (2001).

    Article  CAS  Google Scholar 

  9. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709 (2005).

    Article  CAS  Google Scholar 

  10. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R.H. Webb, and R.R. Anderson: In vivo confocal scanning laser microscopy of human skin: Melanin provides strong contrast. J. Invest. Dermatol. 104, 946 (1995).

    Article  CAS  Google Scholar 

  11. L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, and J.L. West: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A. 100, 13549 (2003).

    Article  CAS  Google Scholar 

  12. I.H. El-Sayed, X. Huang, and M.A. El-Sayed: Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 5, 829 (2005).

    Article  CAS  Google Scholar 

  13. C. Smithpeter, A. Dunn, A.J. Welch, and R. Richards-Kortum: Penetration depth limits of in vivo confocal reflectance imaging. Appl. Opt. 37, 2749 (1998).

    Article  CAS  Google Scholar 

  14. G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitris, J.F. Southern, and J.G. Fujimoto: In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037 (1997).

    Article  CAS  Google Scholar 

  15. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C.A. Puliafito: Optical coherence tomography. Science 254, 1178 (1991).

    Article  CAS  Google Scholar 

  16. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum: Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 63, 1999 (2003).

    CAS  Google Scholar 

  17. X. Huang, P.K. Jain, I.H. El-Sayed, and M.A. El-Sayed: Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2, 681 (2007).

    Article  CAS  Google Scholar 

  18. G.A. Craig, P.J. Allen, and M.D. Mason: Synthesis, characterization, and functionalization of gold nanoparticles for cancer imaging. In Cancer Nanotechnology: Methods and Protocols, edited by S.R. Grobmyer and B.M. Moudgil (Humana Press, 2010).

    Google Scholar 

  19. C.J. Murphy, A.M. Gole, J.W. Stone, P.N. Sisco, A.M. Alkilany, E.C. Goldsmith, and S.C. Baxter: Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721 (2008).

    Article  CAS  Google Scholar 

  20. M-C. Daniel and D. Astruc: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293 (2003).

    Article  CAS  Google Scholar 

  21. M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, and R. Whyman: Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Commun. 801 (1994).

    Google Scholar 

  22. W.M. Tolles: Nanoscience and nanotechnology in Europe. Nanotechnology 7, 59 (1996).

    Article  CAS  Google Scholar 

  23. P.R. Selvakannan, S. Mandal, R. Pasricha, S.D. Adyanthaya, and M. Sastry: One-step synthesis of hydrophobized gold nanoparticles of controllable size by the reduction of aqueous chloroaurate ions by hexadecylaniline at the liquid-liquid interface. Chem. Commun. 1334 (2002).

    Google Scholar 

  24. K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, and Y. Yobiko: Formation of colloidal gold nanoparticles in an ultrasonic field: Control of rate of gold(III) reduction and size of formed gold particles. Langmuir 17, 7717 (2001).

    Article  CAS  Google Scholar 

  25. D.A. Fleming and M.E. Williams: Size-controlled synthesis of gold nanoparticles via high-temperature reduction. Langmuir 20, 3021 (2004).

    Article  CAS  Google Scholar 

  26. G. Frens: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20 (1973).

    Article  CAS  Google Scholar 

  27. H. Wu, F. Bai, Z. Sun, R.E. Haddad, D.M. Boye, Z. Wang, J.Y. Huang, and H. Fan: Nanostructured gold architectures formed through high pressure-driven sintering of spherical nanoparticle arrays. J. Am. Chem. Soc. 132, 12826 (2010).

    Article  CAS  Google Scholar 

  28. J. Zhu, B.M. Lines, M.D. Ganton, M.A. Kerr, and M.S. Workentin: Efficient synthesis of isoxazolidine-tethered monolayer-protected gold nanoparticles (MPGNs) via 1,3-dipolar cycloadditions under high-pressure conditions. J. Org. Chem. 73, 1099 (2008).

    Article  CAS  Google Scholar 

  29. R. Shukla, S.K. Nune, N. Chanda, K. Katti, S. Mekapothula, R.R. Kulkarni, W.V. Welshons, R. Kannan, and K.V. Katti: Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles. Small 4, 1425 (2008).

    Article  CAS  Google Scholar 

  30. G. Han, P. Ghosh, and V.M. Rotello: Functionalized gold nanoparticles for drug delivery. Nanomedicine 2, 113 (2007).

    Article  CAS  Google Scholar 

  31. S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu: Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater. Lett. 61, 3984 (2007).

    Article  CAS  Google Scholar 

  32. S. He, Y. Zhang, Z. Guo, and N. Gu: Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol. Progr. 24, 476 (2008).

    Article  CAS  Google Scholar 

  33. S.S. Shankar, A. Rai, A. Ahmad, and M. Sastry: Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275, 496 (2004).

    Article  CAS  Google Scholar 

  34. G. Southam and T.J. Beveridge: The in vitro formation of placer gold by bacteria. Geochim. Cosmochim. Acta 58, 4527 (1994).

    Article  CAS  Google Scholar 

  35. G. Southam and T.J. Beveridge: The occurrence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro. Geochim. Cosmochim. Acta 60, 4369 (1996).

    Article  CAS  Google Scholar 

  36. T.J. Beveridge and R.G. Murray: Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 141, 876 (1980).

    Article  CAS  Google Scholar 

  37. P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Ramani, R. Parischa, P.V. Ajayakumar, M. Alam, M. Sastry, and R. Kumar: Bioreduction of AuCl-4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. 40 (2001).

  38. P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M.I. Khan, R. Kumar, and M. Sastry: Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3, 461 (2002).

    Article  CAS  Google Scholar 

  39. L. Wen, Z. Lin, P. Gu, J. Zhou, B. Yao, G. Chen, and J. Fu: Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J. Nanopart. Res. 11, 279 (2009).

    Article  CAS  Google Scholar 

  40. A. Ahmad, S. Senapati, M. Islam Khan, R. Kumar, R. Ramani, V. Srinivas, and M. Sastry: Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14, 824 (2003).

    Article  CAS  Google Scholar 

  41. J. Kasthuri, K. Kathiravan, and N. Rajendiran: Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: A novel biological approach. J. Nanopart. Res. 11, 1075 (2009).

    Article  CAS  Google Scholar 

  42. D. Mandal, M.E. Bolander, D. Mukhopadhyay, B. Sarkar, and P. Mukherjee. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol. 69, 485, 2006.

    Article  CAS  Google Scholar 

  43. M. Grzelczak, J. Perez-Juste, P. Mulvaney, and L.M. Liz-Marzan: Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783 (2008).

    Article  CAS  Google Scholar 

  44. S.S. Shankar, A. Ahmad, R. Pasricha, and M. Sastry: Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 13, 1822 (2003).

    Article  CAS  Google Scholar 

  45. A.K. Suresh, D.A. Pelletier, W. Wang, M.L. Broich, J-W. Moon, B. Gu, D.P. Allison, D.C. Joy, T.J. Phelps, and M.J. Doktycz: Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater. 7, 2148 (2011).

    Article  CAS  Google Scholar 

  46. M.R. Bruins, S. Kapil, and F.W. Oehme: Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 45, 198 (2000).

    Article  CAS  Google Scholar 

  47. K.N. Thakkar, S.S. Mhatre, and R.Y. Parikh: Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 6, 257 (2009).

    Article  CAS  Google Scholar 

  48. V.D. Badwaik, J.J. Bartonojo, J.W. Evans, S.V. Sahi, C.B. Willis, and R. Dakshinamurthy: Single-step biofriendly synthesis of surface modifiable, near-spherical gold nanoparticles for applications in biological detection and catalysis. Langmuir 27, 5549 (2011).

    Article  CAS  Google Scholar 

  49. W.D. Geoghegan and G.A. Ackerman: Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: A new method, theory and application. J. Histochem. Cytochem. 25, 1187 (1977).

    Article  CAS  Google Scholar 

  50. W. Jiang, Y.S. KimBetty, J.T. Rutka, and C.W. ChanWarren: Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145 (2008).

    Article  CAS  Google Scholar 

  51. S. Yamashita, O. Katsumata, and Y. Okada: Establishment of a standardized post-embedding method for immunoelectron microscopy by applying heat-induced antigen retrieval. J. Electron. Microsc. (Tokyo) 58, 267 (2009).

    Article  CAS  Google Scholar 

  52. Y. Luo, B. Huang, H. Wu, and R.N. Zare. Controlling electroosmotic flow in poly(dimethylsiloxane) separation channels by means of prepolymer additives. Anal. Chem. 13, 4588 (2006).

    Article  CAS  Google Scholar 

  53. J.L. Hutter and J. Bechhoefer: Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868 (1993).

    Article  CAS  Google Scholar 

  54. G.A. Matei, E.J. Thoreson, J.R. Pratt, D.B. Newell, and N.A. Burnham: Precision and accuracy of thermal calibration of atomic force microscopy cantilevers. Rev. Sci. Instrum. 77, 083703 (2006).

    Article  CAS  Google Scholar 

  55. B. Bhushan: Handbook of Micro/Nanotribology (CRC Press, Boca Raton, FL, 1995).

    Google Scholar 

  56. V. Shahin, Y. Ludwig, C. Schafer, D. Nikova, and H. Oberleithner: Glucocorticoids remodel nuclear envelope structure and permeability. J. Cell. Sci. 118, 2881 (2005).

    Article  CAS  Google Scholar 

  57. P.S. Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. Javier García de Abajo, and L.M. Liz-Marzánand: High-yield synthesis and optical response of gold nanostars. Nanotechnology 19, 015606 (2008).

    Article  CAS  Google Scholar 

  58. S.A. Kumar, Y. Peter, and J.L. Nadeau: Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19, 495101 (2008).

    Article  CAS  Google Scholar 

  59. P.N. Njoki, I.I.S. Lim, D. Mott, H-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C-J. Zhong: Size correlation of optical and spectroscopic properties for gold nanoparticles. J. Phys. Chem. C 111, 14664 (2007).

    Article  CAS  Google Scholar 

  60. J.P. Landers: Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, 3rd ed. (CRC Press, Boca Raton, FL, 2008).

    Google Scholar 

  61. L. Shang, Y. Wang, J. Jiang, and S. Dong: pH-dependent protein conformational changes in albumin: Gold nanoparticle bioconjugates: A spectroscopic study. Langmuir 23, 2714 (2007).

    Article  CAS  Google Scholar 

  62. A.T. Gates, S.O. Fakayode, M. Lowry, G.M. Ganea, A. Murugeshu, J.W. Robinson, R.M. Strongin, and I.M. Warner: Gold nanoparticle sensor for homocysteine thiolactone-induced protein modification. Langmuir 24, 4107 (2008).

    Article  CAS  Google Scholar 

  63. X. Wang, L. Yang, Z. Chen, and D.M. Shin: Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin. 58, 97 (2008).

    Article  Google Scholar 

  64. J. Meng, E. Paetzell, A. Bogorad, and W.O. Soboyejo: Adhesion between peptides/antibodies and breast cancer cells. J. Appl. Phys. 107, 114301 (2010).

    Article  CAS  Google Scholar 

  65. Y. Oni: An implantable biomedical device and nanoparticles for cancer drug release and hyperthermia. Ph.D. Thesis in Mechanical and Aerospace Engineering, Princeton University, 2010.

    Google Scholar 

  66. Nanopartz: Bare spherical gold: Nanopartz accurate spherical gold nanoparticles, 2010. http://www.nanopartz.com/bare_spherical_gold_nanoparticles.htm.

  67. A. Bharde, A. Kulkarni, M. Rao, A. Prabhune, and M. Sastry: Bacterial enzyme mediated biosynthesis of gold nanoparticles. J. Nanosci. Nanotechnol. 7, 4369 (2007).

    Article  CAS  Google Scholar 

  68. D. Bhattacharya and R.K. Gupta: Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol. 25, 199 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the Princeton Grand Challenges Program (E.H., K.A.M., and W.O.S.), the African Development Bank (R.B. and W.O.S.), and the STEP-B Program of the World Bank (O.S.O., K.A.M., N.A., and W.O.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.O. Soboyejo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hampp, E., Botah, R., Odusanya, O. et al. Biosynthesis and adhesion of gold nanoparticles for breast cancer detection and treatment. Journal of Materials Research 27, 2891–2901 (2012). https://doi.org/10.1557/jmr.2012.317

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.317

Navigation