Abstract
Gold nanoparticles (AuNPs) were biosynthesized using Bacillus megaterium, a common soil bacterium. Transmission electron microscopy images revealed that well-developed, spherical, homogeneous nanoparticles are formed extracellularly in reactions containing aqueous chloroaurate ions and conditioned medium at pH 4. Atomic force microscopy measurements showed that adhesion forces between biosynthesized AuNPs and breast cancer cells were almost six times greater than adhesion forces between biosynthesized AuNPs and normal breast cells. Furthermore, adhesion forces of biosynthesized AuNPs to breast cancer cells were three times greater than adhesion forces between chemically synthesized AuNPs and the same breast cancer cells. Finally, adhesion forces between biosynthesized AuNPs conjugated to breast-specific antibodies (AuNP-Ab conjugates), and breast cancer cells were almost five times greater than adhesion forces between unconjugated AuNPs and breast cancer cells. The implications of the results are discussed for the development of nanostructures for the targeted detection and treatment of breast cancer.
Similar content being viewed by others
REFERENCES
A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M.J. Thun: Cancer statistics, 2009. CA Cancer J. Clin. 59, 225 (2009).
J. Meng, J. Fan, G. Galiana, R.T. Branca, P.L. Clasen, S. Ma, J. Zhou, C. Leuschner, C.S.S.R. Kumar, J. Hormes, T. Otiti, A.C. Beye, M.P. Harmer, C.J. Kiely, W. Warren, M.P. Haataja, and W.O. Soboyejo: LHRH-functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI. Mater. Sci. Eng., C 29, 1467 (2009).
T. Tanaka, P. Decuzzi, M. Cristofanilli, J.H. Sakamoto, E. Tasciotti, F.M. Robertson, and M. Ferrari: Nanotechnology for breast cancer therapy. Biomed. Microdevices 11, 49 (2009).
X. Huang, I.H. El-Sayed, W. Qian, and M.A. El-Sayed: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115 (2006).
I.H. El-Sayed, X. Huang, and M.A. El-Sayed: Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129 (2006).
R. Bhattacharya, C.R. Patra, A. Earl, S. Wang, A. Katarya, L. Lu, J.N. Kizhakkedathu, M.J. Yaszemski, P.R. Greipp, D. Mukhopadhyay, and P. Mukherjee: Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells. Nanomed. Nanotechnol. Biol. Med. 3, 224 (2007).
P. Mulvaney, J.M. Perera, S. Biggs, F. Grieser, and G.W. Stevens: The direct measurement of the forces of interaction between a colloid particle and an oil droplet. J. Colloid Interface Sci. 183, 614 (1996).
R. Weissleder: A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316 (2001).
C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709 (2005).
M. Rajadhyaksha, M. Grossman, D. Esterowitz, R.H. Webb, and R.R. Anderson: In vivo confocal scanning laser microscopy of human skin: Melanin provides strong contrast. J. Invest. Dermatol. 104, 946 (1995).
L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, and J.L. West: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A. 100, 13549 (2003).
I.H. El-Sayed, X. Huang, and M.A. El-Sayed: Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 5, 829 (2005).
C. Smithpeter, A. Dunn, A.J. Welch, and R. Richards-Kortum: Penetration depth limits of in vivo confocal reflectance imaging. Appl. Opt. 37, 2749 (1998).
G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitris, J.F. Southern, and J.G. Fujimoto: In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037 (1997).
D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C.A. Puliafito: Optical coherence tomography. Science 254, 1178 (1991).
K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum: Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 63, 1999 (2003).
X. Huang, P.K. Jain, I.H. El-Sayed, and M.A. El-Sayed: Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2, 681 (2007).
G.A. Craig, P.J. Allen, and M.D. Mason: Synthesis, characterization, and functionalization of gold nanoparticles for cancer imaging. In Cancer Nanotechnology: Methods and Protocols, edited by S.R. Grobmyer and B.M. Moudgil (Humana Press, 2010).
C.J. Murphy, A.M. Gole, J.W. Stone, P.N. Sisco, A.M. Alkilany, E.C. Goldsmith, and S.C. Baxter: Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721 (2008).
M-C. Daniel and D. Astruc: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293 (2003).
M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, and R. Whyman: Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Commun. 801 (1994).
W.M. Tolles: Nanoscience and nanotechnology in Europe. Nanotechnology 7, 59 (1996).
P.R. Selvakannan, S. Mandal, R. Pasricha, S.D. Adyanthaya, and M. Sastry: One-step synthesis of hydrophobized gold nanoparticles of controllable size by the reduction of aqueous chloroaurate ions by hexadecylaniline at the liquid-liquid interface. Chem. Commun. 1334 (2002).
K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, and Y. Yobiko: Formation of colloidal gold nanoparticles in an ultrasonic field: Control of rate of gold(III) reduction and size of formed gold particles. Langmuir 17, 7717 (2001).
D.A. Fleming and M.E. Williams: Size-controlled synthesis of gold nanoparticles via high-temperature reduction. Langmuir 20, 3021 (2004).
G. Frens: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20 (1973).
H. Wu, F. Bai, Z. Sun, R.E. Haddad, D.M. Boye, Z. Wang, J.Y. Huang, and H. Fan: Nanostructured gold architectures formed through high pressure-driven sintering of spherical nanoparticle arrays. J. Am. Chem. Soc. 132, 12826 (2010).
J. Zhu, B.M. Lines, M.D. Ganton, M.A. Kerr, and M.S. Workentin: Efficient synthesis of isoxazolidine-tethered monolayer-protected gold nanoparticles (MPGNs) via 1,3-dipolar cycloadditions under high-pressure conditions. J. Org. Chem. 73, 1099 (2008).
R. Shukla, S.K. Nune, N. Chanda, K. Katti, S. Mekapothula, R.R. Kulkarni, W.V. Welshons, R. Kannan, and K.V. Katti: Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles. Small 4, 1425 (2008).
G. Han, P. Ghosh, and V.M. Rotello: Functionalized gold nanoparticles for drug delivery. Nanomedicine 2, 113 (2007).
S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu: Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater. Lett. 61, 3984 (2007).
S. He, Y. Zhang, Z. Guo, and N. Gu: Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol. Progr. 24, 476 (2008).
S.S. Shankar, A. Rai, A. Ahmad, and M. Sastry: Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275, 496 (2004).
G. Southam and T.J. Beveridge: The in vitro formation of placer gold by bacteria. Geochim. Cosmochim. Acta 58, 4527 (1994).
G. Southam and T.J. Beveridge: The occurrence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro. Geochim. Cosmochim. Acta 60, 4369 (1996).
T.J. Beveridge and R.G. Murray: Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 141, 876 (1980).
P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Ramani, R. Parischa, P.V. Ajayakumar, M. Alam, M. Sastry, and R. Kumar: Bioreduction of AuCl-4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. 40 (2001).
P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M.I. Khan, R. Kumar, and M. Sastry: Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3, 461 (2002).
L. Wen, Z. Lin, P. Gu, J. Zhou, B. Yao, G. Chen, and J. Fu: Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J. Nanopart. Res. 11, 279 (2009).
A. Ahmad, S. Senapati, M. Islam Khan, R. Kumar, R. Ramani, V. Srinivas, and M. Sastry: Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14, 824 (2003).
J. Kasthuri, K. Kathiravan, and N. Rajendiran: Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: A novel biological approach. J. Nanopart. Res. 11, 1075 (2009).
D. Mandal, M.E. Bolander, D. Mukhopadhyay, B. Sarkar, and P. Mukherjee. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol. 69, 485, 2006.
M. Grzelczak, J. Perez-Juste, P. Mulvaney, and L.M. Liz-Marzan: Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783 (2008).
S.S. Shankar, A. Ahmad, R. Pasricha, and M. Sastry: Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 13, 1822 (2003).
A.K. Suresh, D.A. Pelletier, W. Wang, M.L. Broich, J-W. Moon, B. Gu, D.P. Allison, D.C. Joy, T.J. Phelps, and M.J. Doktycz: Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater. 7, 2148 (2011).
M.R. Bruins, S. Kapil, and F.W. Oehme: Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 45, 198 (2000).
K.N. Thakkar, S.S. Mhatre, and R.Y. Parikh: Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 6, 257 (2009).
V.D. Badwaik, J.J. Bartonojo, J.W. Evans, S.V. Sahi, C.B. Willis, and R. Dakshinamurthy: Single-step biofriendly synthesis of surface modifiable, near-spherical gold nanoparticles for applications in biological detection and catalysis. Langmuir 27, 5549 (2011).
W.D. Geoghegan and G.A. Ackerman: Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: A new method, theory and application. J. Histochem. Cytochem. 25, 1187 (1977).
W. Jiang, Y.S. KimBetty, J.T. Rutka, and C.W. ChanWarren: Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145 (2008).
S. Yamashita, O. Katsumata, and Y. Okada: Establishment of a standardized post-embedding method for immunoelectron microscopy by applying heat-induced antigen retrieval. J. Electron. Microsc. (Tokyo) 58, 267 (2009).
Y. Luo, B. Huang, H. Wu, and R.N. Zare. Controlling electroosmotic flow in poly(dimethylsiloxane) separation channels by means of prepolymer additives. Anal. Chem. 13, 4588 (2006).
J.L. Hutter and J. Bechhoefer: Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868 (1993).
G.A. Matei, E.J. Thoreson, J.R. Pratt, D.B. Newell, and N.A. Burnham: Precision and accuracy of thermal calibration of atomic force microscopy cantilevers. Rev. Sci. Instrum. 77, 083703 (2006).
B. Bhushan: Handbook of Micro/Nanotribology (CRC Press, Boca Raton, FL, 1995).
V. Shahin, Y. Ludwig, C. Schafer, D. Nikova, and H. Oberleithner: Glucocorticoids remodel nuclear envelope structure and permeability. J. Cell. Sci. 118, 2881 (2005).
P.S. Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. Javier García de Abajo, and L.M. Liz-Marzánand: High-yield synthesis and optical response of gold nanostars. Nanotechnology 19, 015606 (2008).
S.A. Kumar, Y. Peter, and J.L. Nadeau: Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19, 495101 (2008).
P.N. Njoki, I.I.S. Lim, D. Mott, H-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C-J. Zhong: Size correlation of optical and spectroscopic properties for gold nanoparticles. J. Phys. Chem. C 111, 14664 (2007).
J.P. Landers: Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, 3rd ed. (CRC Press, Boca Raton, FL, 2008).
L. Shang, Y. Wang, J. Jiang, and S. Dong: pH-dependent protein conformational changes in albumin: Gold nanoparticle bioconjugates: A spectroscopic study. Langmuir 23, 2714 (2007).
A.T. Gates, S.O. Fakayode, M. Lowry, G.M. Ganea, A. Murugeshu, J.W. Robinson, R.M. Strongin, and I.M. Warner: Gold nanoparticle sensor for homocysteine thiolactone-induced protein modification. Langmuir 24, 4107 (2008).
X. Wang, L. Yang, Z. Chen, and D.M. Shin: Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin. 58, 97 (2008).
J. Meng, E. Paetzell, A. Bogorad, and W.O. Soboyejo: Adhesion between peptides/antibodies and breast cancer cells. J. Appl. Phys. 107, 114301 (2010).
Y. Oni: An implantable biomedical device and nanoparticles for cancer drug release and hyperthermia. Ph.D. Thesis in Mechanical and Aerospace Engineering, Princeton University, 2010.
Nanopartz: Bare spherical gold: Nanopartz accurate spherical gold nanoparticles, 2010. http://www.nanopartz.com/bare_spherical_gold_nanoparticles.htm.
A. Bharde, A. Kulkarni, M. Rao, A. Prabhune, and M. Sastry: Bacterial enzyme mediated biosynthesis of gold nanoparticles. J. Nanosci. Nanotechnol. 7, 4369 (2007).
D. Bhattacharya and R.K. Gupta: Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol. 25, 199 (2005).
ACKNOWLEDGMENTS
This research was supported by the Princeton Grand Challenges Program (E.H., K.A.M., and W.O.S.), the African Development Bank (R.B. and W.O.S.), and the STEP-B Program of the World Bank (O.S.O., K.A.M., N.A., and W.O.S.).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hampp, E., Botah, R., Odusanya, O. et al. Biosynthesis and adhesion of gold nanoparticles for breast cancer detection and treatment. Journal of Materials Research 27, 2891–2901 (2012). https://doi.org/10.1557/jmr.2012.317
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2012.317