Skip to main content
Log in

Preparation of controlled release nanodrug ibuprofen supported on mesoporous silica using supercritical carbon dioxide

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Deposition of ibuprofen (IBU) into ordered mesoporous silica SBA-15 was carried out to prepare controlled release nanodrug using supercritical carbon dioxide (scCO2) as solvent at 17 MPa and 310.15 K. The maximum drug loading of IBU/SBA-15 was as high as 41.96%. The characterization of the obtained materials was performed using x-ray diffractometry (XRD), scanning electron microscopy (SEM), and nitrogen (N2) adsorption-desorption isotherms; the results indicate that most adsorbed drugs were inside the nanoscale channels. The in vitro study shows that the time of complete (100%) release significantly decreases as drug-loading decreases. The interesting aspect is that the samples with similar drug loading display different release rates, which may be due to differences in the drug quantity adsorbed inside the pores. In addition, the modified Noyes-Whitney equation was used to model the release kinetics for all the samples and a good agreement was obtained between the model representation and experimental data. In addition, the solubility of IBU in scCO2was tested through a high-pressure view cell at the temperature range of 298.15–320.15 K and pressure range of 7–17 MPa. The experimental solubility data were well correlated using Chrastil’s equation as well as Mendez-Santiago and Teja’s equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
TABLE I
FIG. 2
FIG. 3
TABLE II
FIG. 4
FIG. 5
TABLE III
FIG. 6
TABLE IV

Similar content being viewed by others

REFERENCES

  1. I. Smirnova, S. Suttiruengwong, and W. Arlt: Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J. Non-Cryst. Solids 350, 54 (2004).

    Article  CAS  Google Scholar 

  2. C. Charnay, S. Bégu, C. Tourné-Péteilh, L. Nicole, D.A. Lerner, and J.M. Devoisselle: Inclusion of ibuprofen in mesoporous templated silica: Drug loading and release property. Eur. J. Pharm. Biopharm. 57, 533 (2004).

    Article  CAS  Google Scholar 

  3. I. Izquierdo-Barba, E. Sousa, J.C. Doadrio, A.L. Doadrio, J.P. Pariente, A. Martínez, F. Babonneau, and M. Vallet-Regí: Influence of mesoporous structure type on the controlled delivery of drugs: Release of ibuprofen from MCM-48, SBA-15 and functionalized SBA-15. J. Sol-Gel Sci. Technol. 50, 421 (2009).

    Article  CAS  Google Scholar 

  4. H. Yu and Q-Z. Zhai: Mesoporous SBA-15 molecular sieve as a carrier for controlled release of nimodipine. Microporous Mesoporous Mater. 123, 298 (2009).

    Article  CAS  Google Scholar 

  5. M. Vallet-Regi, A. Rámila, R.P. del Real, and J. Pérez-Pariente: A new property of MCM-41: Drug delivery system. Chem. Mater. 13, 308 (2001).

    Article  CAS  Google Scholar 

  6. F. Belhadj-Ahmed, E. Badens, P. Llewellyn, R. Denoyel, and G. Charbit: Impregnation of vitamin E acetate on silica mesoporous phases using supercritical carbon dioxide. J. Supercrit. Fluids 51, 278 (2009).

    Article  CAS  Google Scholar 

  7. Y. Kawashima and P. York: Drug delivery applications of supercritical fluid technology. Adv. Drug Delivery Rev. 60, 297 (2008).

    Article  CAS  Google Scholar 

  8. A. Duarte, T. Casimiro, A. Aguiarricardo, A. Simplicio, and C. Duarte: Supercritical fluid polymerization and impregnation of molecularly imprinted polymers for drug delivery. J. Supercrit. Fluids 39, 102 (2006).

    Article  CAS  Google Scholar 

  9. K. Gong, I. Rehman, and J. Darr: Characterization and drug-release investigation of amorphous drug–hydroxypropyl methylcellulose composites made via supercritical carbon dioxide-assisted impregnation. J. Pharm. Biomed. Anal. 48, 1112 (2008).

    Article  CAS  Google Scholar 

  10. R. Yoganathan, R. Mammucari, and N.R. Foster: Impregnation of ibuprofen into polycaprolactone using supercritical carbon dioxide. J. Phys. Conf. Ser. 215, 012087 (2010).

    Article  Google Scholar 

  11. A.R.C. Duarte, S.G. Caridade, J.F. Mano, and R.L. Reis: Processing of novel bioactive polymeric matrixes for tissue engineering using supercritical fluid technology. Mater. Sci. Eng., C 29, 2110 (2009).

    Article  CAS  Google Scholar 

  12. M. Ni, Q-Q. Xu, G. Xu, E-J. Wang, and J-Z. Yin: Applications of supercritical fluid transport technology in preparation of controlled- release drug delivery systems. Prog. Chem. 23, 1611 (2011).

    CAS  Google Scholar 

  13. X-Z. Zhang, J-Z. Yin, Q-Q. Xu, C-J. Zhang, and A-Q. Wang: Supercritical fluids deposition techniques for the formation of nanocomposites. Prog. Chem. 21, 606 (2009).

    Google Scholar 

  14. C-J. Zhang, J-Z. Yin, Q-Q. Xu, and A-Q. Wang: Preparation, characterization and catalysis properties of Ag/SBA-15 nanocomposite by supercritical fluid deposition. J. Inorg. Mater. 24, 129 (2009).

    Article  Google Scholar 

  15. Q-Q. Xu, J-Z. Yin, C-J. Zhang, and A-Q. Wang: Composite preparation of nano Cu/SBA-15 by supercritical fluid deposition. Acta Materiae Compositae Sinica 26, 25 (2009).

    CAS  Google Scholar 

  16. A-Q. Wang, C-H. Tu, M-Y. Zheng, X.-D. Wang, and T. Zhang: Factors influencing the catalytic activity of SBA-15-supported copper nanoparticles in CO oxidation. Appl. Catal., A 297, 40 (2006).

    Article  Google Scholar 

  17. D. Zhou, W. Yu, Q-Q. Xu, and J-Z. Yin. Solubilization of polyalcohol in supercritical CO2 microemulsion. Acta Phys. Chim. Sin. 27, 1300 (2011).

    Article  CAS  Google Scholar 

  18. D.Y. Peng and D.B. Robinson: A new two-constant equation-of-state. Ind. Eng. Chem. Res. Fundam. 15, 59–64 (1976).

    Article  CAS  Google Scholar 

  19. Q-Q. Xu, C-J. Zhang, X-Z. Zhang, J-Z. Yin, and Y. Liu: Controlled synthesis of Ag nanowires and nanoparticles in mesoporous silica using supercritical carbon dioxide and cosolvent. J. Supercrit. Fluids 62, 184 (2012).

    Article  CAS  Google Scholar 

  20. G.S. Gurdial and N.R. Foster: Solubility of o-hydroxy benzoic acid in supercritical carbon dioxide. Ind. Eng. Chem. Res. 30, 575 (1991).

    Article  CAS  Google Scholar 

  21. M. Charoenchaitrakool, F. Dehghani, N.R. Foster, and H.K. Chan: Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals. Ind. Eng. Chem. Res. 39, 4794 (2000).

    Article  CAS  Google Scholar 

  22. J. Chrastil: Solubility of solids and liquids in supercritical gases. J. Phys. Chem. 86, 3016 (1982).

    Article  CAS  Google Scholar 

  23. J. Mendez-Santiago and A.S. Teja: Solubility of solids in supercritical fluids: Consistency of data and a new model for cosolvent systems. Ind. Eng. Chem. Res. 39, 4767 (2000).

    Article  CAS  Google Scholar 

  24. D.L. Sparks, R. Hernandez, and L.A. Estévez: Evaluation of density-based models for the solubility of solids in supercritical carbon dioxide and formulation of a new model. Chem. Eng. Sci. 63, 4292 (2008).

    Article  CAS  Google Scholar 

  25. J.C. Groen, L.A.A. Peffer, and J. Pérez-Ramírez: Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 60, 1 (2003).

    Article  CAS  Google Scholar 

  26. A.R.C. Duarte, A.L. Simplicio, A. Vega-González, P. Subra-Paternault, P. Coimbra, M.H. Gil, H.C. de Sousa, and C.M.M. Duarte: Supercritical fluid impregnation of a biocompatible polymer for ophthalmic drug delivery. J. Supercrit. Fluids 42, 373 (2007).

    Article  CAS  Google Scholar 

  27. A. Hillerström, J. van Stam, and M. Anderson: Ibuprofen loading into mesostructured silica using liquid carbon dioxide as a solvent. Green Chem. 11, 662 (2009).

    Article  Google Scholar 

  28. M. Manzano, V. Aina, C.O. Areán, F. Balas, V. Cauda, M. Colilla, M.R. Delgado, and M. Vallet-Regí: Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalization. Chem. Eng. J. 137, 30 (2008).

    Article  CAS  Google Scholar 

  29. R. Mortera, S. Fiorilli, E. Garrone, E. Verné, and B. Onida: Pores occlusion in MCM-41 spheres immersed in SBF and the effect on ibuprofen delivery kinetics: A quantitative model. Chem. Eng. J. 156, 184 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The work was supported by the National Natural Science Foundation of China (Nos. 20976026 and 20976028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhong Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, M., Xu, QQ. & Yin, JZ. Preparation of controlled release nanodrug ibuprofen supported on mesoporous silica using supercritical carbon dioxide. Journal of Materials Research 27, 2902–2910 (2012). https://doi.org/10.1557/jmr.2012.312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.312

Navigation