Skip to main content
Log in

Yttria-stabilized hafnia: Thermochemistry of formation and hydration of nanoparticles

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The surface enthalpy of yttria-stabilized hafnia (YSH) (YxHf1 − xO2 − x/2) with different compositions was directly measured by a combination of high-temperature oxide-melt solution calorimetry and water adsorption calorimetry. The surface enthalpies for hydrated surfaces are 0.27 ± 0.06 J/m2 for x = 0.1, 0.77 ± 0.09 J/m2 for x = 0.17, and 1.30 ± 0.09 J/m2 for x = 0.24; and those for anhydrous surfaces are 0.51 ± 0.06, 1.08 ± 0.13, and 1.76 ± 0.09 J/m2 respectively. The enthalpies of both hydrated and anhydrous surfaces increase approximately linearly (R2 > 0.93) with increasing yttrium concentration. The surface enthalpies of Y0.1Hf0.9O1.95 were used to approximate those for pure anhydrous cubic hafnia. Combining the data relating to surface energies for monoclinic hafnia from our previous work and estimated data for tetragonal hafnia, a tentative stability map of HfO2 polymorphs as a function of surface area (SA) was constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
TABLE II.
FIG. 2.
TABLE III.
FIG. 3.
TABLE IV.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. X. Luo, W. Zhou, S.V. Ushakov, A. Navrotsky, and A.A. Demkov: Monoclinic to tetragonal transformations in hafnia and zirconia: A combined calorimetric and density functional study. Phys. Rev. B 80, 134119 (2009).

    Article  Google Scholar 

  2. C. Wang, M. Zinkevich, and F. Aldinger: The zirconia-hafnia system: DTA measurements and thermodynamic calculations. J. Am. Ceram. Soc. 89, 3751 (2006).

    Article  CAS  Google Scholar 

  3. C.E. Curtis, L.M. Doney, and J.R. Johnson: Some properties of hafnium oxide, hafnium silicate, calcium hafnate, and hafnium carbide. J. Am. Ceram. Soc. 37, 458 (1954).

    Article  CAS  Google Scholar 

  4. D.W. Stacy and D.R. Wilder: The yttria-hafnia system. J. Am. Ceram. Soc. 58, 285 (1975).

    Article  CAS  Google Scholar 

  5. X. Luo, A.A. Demkov, D. Triyoso, P. Fejes, R. Gregory, and S. Zollner: Combined experimental and theoretical study of thin hafnia films. Phys. Rev. B 78, 245314 (2008).

    Article  Google Scholar 

  6. H. Kim, P.C. McIntyre, and K.C. Saraswat: Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 82, 106 (2003).

    Article  CAS  Google Scholar 

  7. J. Aarik, A. Aidla, H. Mandar, T. Uustare, K. Kukli, and M. Schuisky: Phase transformations in hafnium dioxide thin films grown by atomic layer deposition at high temperatures. Appl. Surf. Sci. 173, 15 (2001).

    Article  CAS  Google Scholar 

  8. M. Shandalov and P.C. McIntyre: Size-dependent polymorphism in HfO2 nanotubes and nanoscale thin films. J. Appl. Phys. 106, 084322 (2009).

    Article  Google Scholar 

  9. J. Aarik, A. Aidla, H. Mandar, V. Sammelselg, and T. Uustare: Texture development in nanocrystalline hafnium dioxide thin films grown by atomic layer deposition. J. Cryst. Growth 220, 105 (2000).

    Article  CAS  Google Scholar 

  10. M.R. Ranade, A. Navrotsky, H.Z. Zhang, J.F. Banfield, S.H. Elder, A. Zaban, P.H. Borse, S.K. Kulkarni, G.S. Doran, and H.J. Whitfield: Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci. U.S.A. 99, 6476 (2002).

    Article  CAS  Google Scholar 

  11. A.A. Levchenko, G.S. Li, J. Boerio-Goates, B.F. Woodfield, and A. Navrotsky: TiO2 stability landscape: Polymorphism, surface energy, and bound water energetics. Chem. Mater. 18, 6324 (2006).

    Article  CAS  Google Scholar 

  12. J.M. McHale, A. Auroux, A.J. Perrotta, and A. Navrotsky: Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277, 788 (1997).

    Article  CAS  Google Scholar 

  13. J.M. McHale, A. Navrotsky, and A.J. Perrotta: Effects of increased surface area and chemisorbed H2O on the relative stability of nanocrystalline gamma-Al2O3 and alpha-Al2O3. J. Phys. Chem. B 101, 603 (1997).

    Article  CAS  Google Scholar 

  14. O. Bomati-Miguel, L. Mazeina, A. Navrotsky, and S. Veintemillas-Verdaguer: Calorimetric study of maghemite nanoparticles synthesized by laser-induced pyrolysis. Chem. Mater. 20, 591 (2008).

    Article  CAS  Google Scholar 

  15. L. Mazeina and A. Navrotsky: Surface enthalpy of goethite. Clays Clay Miner. 53, 113 (2005).

    Article  CAS  Google Scholar 

  16. M.W. Pitcher, S.V. Ushakov, A. Navrotsky, B.F. Woodfield, G.S. Li, J. Boerio-Goates, and B.M. Tissue: Energy crossovers in nanocrystalline zirconia. J. Am. Ceram. Soc. 88, 160 (2005).

    Article  CAS  Google Scholar 

  17. A.V. Radha, O. Bomati-Miguel, S.V. Ushakov, A. Navrotsky, and P. Tartaj: Surface enthalpy, enthalpy of water adsorption, and phase stability in nanocrystalline monoclinic zirconia. J. Am. Ceram. Soc. 92, 133 (2009).

    Article  CAS  Google Scholar 

  18. A. Navrotsky: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 (1997).

    Article  CAS  Google Scholar 

  19. W. Zhou, S.V. Ushakov, T. Wang, J.G. Ekerdt, A.A. Demkov, and A. Navrotsky: Hafnia: Energetics of thin films and nanoparticles. J. Appl. Phys. 107, 123514 (2010).

    Article  Google Scholar 

  20. S.V. Ushakov and A. Navrotsky: Direct measurements of water adsorption enthalpy on hafnia and zirconia. Appl. Phys. Lett. 87, 3 (2005).

    Article  Google Scholar 

  21. T.A. Lee and A. Navrotsky: Enthalpy of formation of cubic yttria-stabilized hafnia. J. Mater. Res. 19, 1855 (2004).

    Article  CAS  Google Scholar 

  22. S.V. Ushakov, C.E. Brown, and A. Navrotsky: Effect of La and Y on crystallization temperatures of hafnia and zirconia. J. Mater. Res. 19, 693 (2004).

    Article  CAS  Google Scholar 

  23. S. Brunauer, P.H. Emmett, and E. Teller: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).

    Article  CAS  Google Scholar 

  24. G.C. Costa, S.V. Ushakov, R.H. Castro, A. Navrotsky, and R. Muccillo: Calorimetric measurement of surface and interface enthalpies of yttria stabilized zirconia (YSZ). Chem. Mater. 22, 2937 (2010).

    Article  CAS  Google Scholar 

  25. T.Y. Shvareva, S.V. Ushakov, A. Navrotsky, J.A. Libera, and J.W. Elam: Thermochemistry of nanoparticles on a substrate: Zinc oxide on amorphous silica. J. Mater. Res. 23, 1907 (2008).

    Article  CAS  Google Scholar 

  26. R.A. Robie, B.S. Hemingway, and J.R. Fisher: Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar Pressure and at Higher Temperatures. (U.S. Geol. Surv. Bull. 1452, Washington, DC, 1978) p. 172.

    Google Scholar 

  27. K. Wu and Z. Jin: Thermodynamic assessment of the HfO2-YO1.5, quasibinary system. Calphad 21, 421 (1997).

    Article  CAS  Google Scholar 

  28. P. Zhang, A. Navrotsky, B. Guo, I. Kennedy, A.N. Clark, L. Charles, and Q. Liu: Energetics of cubic and monoclinic yttrium oxide polymorphs: Phase transitions, surface enthalpies, and stability at the nanoscale. J. Phys. Chem. C 112, 932 (2008).

    Article  CAS  Google Scholar 

  29. Y. Murase and E. Kato: Phase transformation of zirconia by Ball-Milling. J. Am. Ceram. Soc. 62, 527 (1979).

    Article  CAS  Google Scholar 

  30. Y. Murase and E. Kato: Role of water vapor in crystallite growth and tetragonal-monoclinic phase transformation of zirconia. J. Am. Ceram. Soc. 66, 196 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Award DE-FG02-03ER46053. We thank Fen Xu, Sarah Roeske and Brian Joy for electron microprobe analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Navrotsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., Ushakov, S.V. & Navrotsky, A. Yttria-stabilized hafnia: Thermochemistry of formation and hydration of nanoparticles. Journal of Materials Research 27, 1022–1028 (2012). https://doi.org/10.1557/jmr.2012.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.31

Navigation