Skip to main content
Log in

Synthesis of DNA-encapsulated silica elaborated by sol–gel routes

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The highly specific functions of DNA can be used for designing novel functional materials. However, aqueous solubility and biochemical instability of DNA impede its direct utilization as a functional component. Herein, preparation of a hybrid material encapsulating the DNA molecules (double-stranded salmon sperm, 50–5000 base pairs) in robust host—sol–gel-derived silica—has been described. The encapsulation was carried out in two steps: hydrolysis of an acidic tetraethylorthosilicate [Si(OC2H5)4] sol and was followed by condensation near physiological pH upon addition of alkaline DNA-containing solutions. The gelation behavior and structural properties of the DNA–silica hybrids were investigated by 29Si nuclear magnetic resonance and by nitrogen adsorption. The selective adsorption of a DNA-interactive reagent molecule (ethidium bromide) in their diluted aqueous solutions on DNA–silica hybrids confirmed that the DNA molecules remained entrapped within the silica host without any deterioration. A DNA encapsulation mechanism correlating the silica microstructure and DNA holding efficiency has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Braun, S. Rappoport, R. Zusman, D. Avnir, and M. Ottolenghi: Biochemically active sol–gel glasses: The trapping of enzymes. Mater. Lett. 10, 1–5 (1990).

    CAS  Google Scholar 

  2. D. Avnir, S. Braun, O. Lev, and M. Ottolenghi: Enzymes and other proteins entrapped in sol–gel materials. Chem. Mater. 6, 1605–1614 (1994).

    CAS  Google Scholar 

  3. I. Gill and A. Ballesteros: Encapsulation of biologicals within silicate, siloxane, and hybrid sol–gel polymers: An efficient and generic approach. J. Am. Chem. Soc. 120, 8587–8598 (1998).

    CAS  Google Scholar 

  4. I. Gill and A. Ballesteros: Bioencapsulation within synthetic polymers (Part 1): Sol–gel encapsulated biologicals. Trends Biotechnol. 18, 282–296 (2000).

    CAS  Google Scholar 

  5. G. Carturan, R. Campostrini, S. Dire, V. Scardi, and E. Dealteriis: Inorganic gels for immobilization of biocatalysts—inclusion of invertase-active whole cell of yeast (saccharomyces-cerevisiae) into thin-layers of gel deposited on glass sheets. J. Mol. Catal. 57, L13–L16 (1989).

    CAS  Google Scholar 

  6. E.J.A Pope: Gel encapsulated microorganisms–saccharomyces-cerevisiae-silica–gel biocomposites. J. Sol-Gel Sci. Technol. 4, 225–229 (1995).

    CAS  Google Scholar 

  7. B.C. Dave, B. Dunn, J.S. Valentine, and J.I. Zink: Sol–gel encapsulation methods for biosensors. Anal. Chem. 66, A1120–A1127 (1994).

    Google Scholar 

  8. J.D. Brennan: Using intrinsic fluorescence to investigate proteins entrapped in sol–gel derived materials. Appl. Spectrosc. 53, 106A–121A (1999).

    CAS  Google Scholar 

  9. J. Lin and C.W. Brown: Sol–gel glass as a matrix for chemical and biochemical sensing. TrAC, Trends Anal. Chem. 16, 200–211 (1997).

    CAS  Google Scholar 

  10. S. Mann, S.L. Burkett, S.A. Davis, C.E. Fowler, N.H. Mendelson, S.D. Sims, D. Walsh, and N.T. Whilton: Sol–gel synthesis of organized matter. Chem. Mater. 9, 2300–2310 (1997).

    CAS  Google Scholar 

  11. L.A. Estroff and A.D. Hamilton: At the interface of organic and inorganic chemistry: Bioinspired synthesis of composite materials. Chem. Mater. 13, 3227–3235 (2001).

    CAS  Google Scholar 

  12. S. Weiner and L. Addadi: Design strategies in mineralized biological materials. J. Mater. Chem. 5, 689–702 (1997).

    Google Scholar 

  13. H. Böttcher, P. Slowik, and W. Suss: Sol–gel carrier systems for controlled drug delivery. J. Sol-Gel Sci. Technol. 13, 277–281 (1998).

    Google Scholar 

  14. D. Avnir, T. Coradin, O. Lev, and J. Livage: Recent bio-applications of sol-gel materials. J. Mater. Chem. 16, 1013–1030 (2006).

    CAS  Google Scholar 

  15. F.D. Ledley: Pharmaceutical approach to somatic gene therapy. Pharm. Res. 13, 1595–1614 (1996).

    CAS  Google Scholar 

  16. T.R. Flotte and B.J. Carter: Adeno-associated virus vectors for gene therapy of cystic fibrosis. Methods Enzymol. 292, 717–732 (1998).

    CAS  Google Scholar 

  17. C. Mah, B.J. Byrne, and T.R. Flotte: Virus-based gene delivery systems. Clin. Pharmacokinet. 41, 901–911 (2002).

    CAS  Google Scholar 

  18. A.G. Schatzlein: Non-viral vectors in cancer gene therapy: Principles and progress. Anti-Cancer Drug 12, 275–304 (2001).

    CAS  Google Scholar 

  19. G.R. Rettig and K.G. Rice: Non-viral gene delivery: From the needle to the nucleus. Expert Opin. Biol. Ther. 7, 799–808 (2007).

    CAS  Google Scholar 

  20. H. Hosseinkhani, T. Aoyama, O. Ogawa, and Y. Tabata: Ultrasound enhances the transfection of plasmid DNA by non-viral vectors. Curr. Pharm. Biotechnol. 4, 109–122 (2003).

    CAS  Google Scholar 

  21. J. Fidanza, M. Glazer, D. Mutnick, G. McGall, and C. Frank: High capacity substrates as a platform for a DNA probe array genotyping assay. Nucleosides Nucleotides Nucleic Acids 20, 533–538 (2001).

    CAS  Google Scholar 

  22. M. Glazer, J. Fidanza, G. McGall, and C. Frank: Colloidal silica films for high-capacity DNA probe arrays. Chem. Mater. 13, 4773–4782 (2001).

    CAS  Google Scholar 

  23. N. Rupcich, A. Goldstein, and J.D. Brennan: Optimization of sol-gel formulations and surface treatments for the development of pin-printed protein microarrays. Chem. Mater. 15, 1803–1811 (2003).

    Google Scholar 

  24. M.C. Breadmore, K.A. Wolfe, I.G. Arcibal, W.K. Leung, D. Dickson, B.C. Giordano, M.E. Power, J.P. Ferrance, S.H. Feldman, P.M. Norris, and J.P. Landers: Microchip-based purification of DNA from biological samples. Anal. Chem. 75, 1880–1886 (2003).

    CAS  Google Scholar 

  25. J.R. Phinney, J.F. Conroy, B. Hosticka, M.E. Power, J.P. Ferrance, J.P. Landers, and M.P. Norris: The design and testing of a silica sol-gel-based hybridization array. J. Non-Cryst. Solids 350, 39–45 (2004).

    CAS  Google Scholar 

  26. C. Durucan and C.G. Pantano: Hybrid sol/gel coatings for DNA arrays and other lab-on-a-chip applications. In Handbook Sol-Gel Science Vol. III: Applications of Sol-Gel Technology, S. Sakka, R.M. Almeida, and H. Kozuka ed.; Kluwer Academic Publishers: New York, 2004; pp. 551–575.

    Google Scholar 

  27. A. Pierre, J. Bonnet, A. Vekris, and J. Portier: Encapsulation of deoxyribonucleic acid molecules in silica and hybrid organic-silica gels. J. Mater. Sci. - Mater. Med. 12, 51–55 (2001).

    CAS  Google Scholar 

  28. M. Numata, K. Sugiyasu, T. Hasegawa, and S. Shinkai: Sol-gel reaction using DNA as a template: An attempt toward transcription of DNA into inorganic materials. Angew. Chem. Int. Ed. 43, 3279–3283 (2004).

    CAS  Google Scholar 

  29. S. Shinkai, M. Takeuchi, and A.H. Bae: Rational design and creation of novel polymeric superstructures by oxidative polymerization utilizing anionic templates. Supramol. Chem. 17, 181–186 (2005).

    CAS  Google Scholar 

  30. Y. Shen, G. Mackey, N. Rupcich, D. Gloster, W. Chiuman, Y. Li, and J.D. Brennan: Entrapment of fluorescent signaling DNA enzymes in sol–gel-derived derived materials for metal ion sensing. Anal. Chem. 79, 3494–3503 (2005).

    Google Scholar 

  31. N. Rupcich, R. Nutiu, L. Yu, and J.D. Brennan: Entrapment of fluorescent signaling DNA aptamers in sol–gel-derived silica. Anal. Chem. 77, 4300–4307 (2007).

    Google Scholar 

  32. S. Satoh, B. Fugetsu, B. Nomizu, and N. Nishi: Functional DNA–silica composite prepared by sol–gel method. Polym. J. 37, 94–101 (2006).

    Google Scholar 

  33. M. Fujiwara, K. Shiokawa, K. Hayashi, K. Morigaki, and Y. Nakahara: Direct encapsulation of BSA and DNA into silica microcapsules (hollow spheres). J. Biomed. Mater. Res. Part A 81, 103–112 (2007).

    Google Scholar 

  34. S. Nafisi, A. Saboury, N. Keramat, J.F. Neault, and H.A. Tajmir-Riahi: Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue. J. Mol. Struct. 827, 35–43 (2007).

    CAS  Google Scholar 

  35. R.H. Glaser, G.L. Wilkes, and E. Bronnimann: Solid-state 29Si NMR of TEOS-based multifunctional sol-gel materials. J. Non-Cryst. Solids 113. 73–87 (1989).

    CAS  Google Scholar 

  36. S. Brunauer, L.S. Deming, E. Deming, and E. Teller: On a theory of the van der waals adsorption of gases. J. Am. Chem. Soc. 62, 1723–1732 (1940).

    CAS  Google Scholar 

  37. S. Storck, H. Bretinger, and W.F. Maier: Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl. Catal., A 174, 137–146 (1998).

    CAS  Google Scholar 

  38. J.C. Groena, A.A. Peffera Louk, and J. Pérez-Ramírez: Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 60, 1–17 (2003).

    Google Scholar 

  39. C.J. Brinker, K.D. Keefer, D.W. Schaefer, and C.S. Ashley: Sol-gel transition in simple silicates. J. Non-Cryst. Solids 48, 47–64 (1982).

    CAS  Google Scholar 

  40. C.J. Brinker, D.K. Keefer, D.W. Schaefer, R.A. Assink, B.D. Kay, and C.S. Ashley: Sol-gel transition in simple silicates-II. J. Non-Cryst. Solids 63, 45–49 (1984).

    CAS  Google Scholar 

  41. W.M. Jones and D.B. Fischbach: Novel processing of silica hydrosols and gels. J. Non-Cryst. Solids 101, 123–126 (1988).

    CAS  Google Scholar 

  42. C.J. Brinker and G.W. Scherer: Sol→Gel→ glass: I. Gelation and gel structure. J. Non-Cryst. Solids 70, 301–322 (1985).

    CAS  Google Scholar 

  43. J.Y. Ying and J.B. Benzinger: Structural evolution of alkoxide silica gels to glass: Effect of catalyst pH. J. Am. Ceram Soc. 76, 2571–2582 (1993).

    CAS  Google Scholar 

  44. M. Yamada and H. Aono: DNA–inorganic hybrid material as selective absorbent for harmful compounds. Polymer 49, 4658–4665 (2008).

    CAS  Google Scholar 

  45. M. Yamada, K. Kato, M. Nomizu, N. Sakairi, K. Ohkawa, H. Yamamoto, and N. Nishi: Preparation and characterization of DNA films induced by UV irradiation. Chem. Eur. J. 8, 1407–1412 (2002).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors (D.K. and C.D.) acknowledge ÖYP Program of Middle East Technical University and METU-BAP (Grant No. 2007-03-08-05) for the financial support. We would like to thank Meral Yücel and Ayşe Eda Aksoy for valuable advices and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caner Durucan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapusuz, D., Durucan, C. Synthesis of DNA-encapsulated silica elaborated by sol–gel routes. Journal of Materials Research 28, 175–184 (2013). https://doi.org/10.1557/jmr.2012.309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.309

Navigation