Skip to main content
Log in

Dynamic responses of reactive metallic structures under thermal and mechanical ignitions

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have studied dynamic thermo-mechano-chemical responses of reactive metallic systems, both in clouds of small oxygen-free particles (≈1-10 urn in diameter) produced by fracturing Zr-rich bulk metallic glass and in pure Zr metal foils (≈25 urn thin), under thermal (laser ablation or pulse electrical heating) and mechanical loadings. The mechanical fracture/fragmentation and fragments reactions were time resolved using an integrated set of fast six-channel optical pyrometer, high-speed microphotographic camera, and time- and angle-resolved synchrotron x-ray diffraction. These small-scale tabletop real-time experiments performed on or near surfaces of reactive metals provide fundamental data, in atomistic scales or of particle clouds, regarding fragmentation mechanics, combustion mechanisms and kinetics, and dynamics of energy release under thermal and mechanical loadings. We present the results of pure Zr and Zr-rich amorphous metals, not only signifying diversified combustion mechanisms depending on microstructures, particle sizes, oxygen pressure, and ignition conditions but also providing fundamental data that can be used to develop and validate thermochemical and mechanochemical models for reactive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. R.A. Yetter, G.A. Risha, and S.F. Son: Metal particle combustion and nanotechnology. Proc. Combust. Inst. 32, 1819 (2009).

    Article  CAS  Google Scholar 

  2. D.D. Dlott: Thinking big (and small) about energetic materials. Mater. Sci. Technol. 22, 463 (2006).

    Article  CAS  Google Scholar 

  3. E.L. Dreizin: Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 35, 141 (2009).

    Article  CAS  Google Scholar 

  4. B.L. Holian: Molecular Dynamics Simulations of Detonation Phenomena (ITRI Press, McLean, VA, 2004).

    Google Scholar 

  5. K. Park, D. Lee, A. Rai, D. Mukherjee, and M.R. Zachariah: Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. J. Phys. Chem. B 109, 7290 (2005).

    Article  CAS  Google Scholar 

  6. J.J. Granier and M.L. Pantoya: Laser ignition of nanocomposite thermites. Combust. Flame 138, 373 (2004).

    Article  CAS  Google Scholar 

  7. D. Skinner, D. Olson, and A. Block-Bolten: Electrostatic discharge ignition of energetic materials. Propellants Explos. Pyrotech. 23, 34 (1998).

    Article  CAS  Google Scholar 

  8. K.H. Ewald, U. Anselmi-Tamburini, and Z.A. Munir: Combustion of zirconium powders in oxygen. Mater. Sci. Eng. A 291, 118 (2000).

    Article  Google Scholar 

  9. R.J. Gill, C. Badiola, and E.L. Dreizin: Combustion times and emission profiles of micron-sized aluminum particles burning in different environments. Combust. Flame 157, 2015 (2010).

    Article  CAS  Google Scholar 

  10. M.A. Trunov, M. Schoenitz, and E.L. Dreizin: Ignition of aluminum powders under different experimental conditions. Propellants Explos. Pyrotech. 30, 36 (2005).

    Article  CAS  Google Scholar 

  11. Y. Huang, G.A. Risha, V. Yang, and R.A. Yetter: Effect of particle size on combustion of aluminum particle dust in air. Combust. Flame 156, 5 (2009).

    Article  CAS  Google Scholar 

  12. M.A. Trunov, M. Schoenitz, and E.L. Dreizin: Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. Combust. Theor. Model. 10, 603 (2006).

    Article  CAS  Google Scholar 

  13. H. Wei and C-S. Yoo: Kinetics of small single particle combustion of zirconium alloy. J. Appl. Phys. 111, 023506 (2012).

    Article  Google Scholar 

  14. E.L. Dreizin: Effect of phase changes on metal-particle combustion processes. Combust. Explo. Shock. 39, 681 (2003).

    Article  Google Scholar 

  15. M.A. Trunov, M. Schoenitz, X.Y. Zhu, and E.L. Dreizin: Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust. Flame 140, 310 (2005).

    Article  CAS  Google Scholar 

  16. E.L. Dreizin: Phase changes in metal combustion. Prog. Energy Combust. Sci. 26, 57 (2000).

    Article  CAS  Google Scholar 

  17. I.E. Molodetsky, E.L. Dreizin, and C.K. Law: Evolution of particle temperature and internal composition for zirconium burning in air. Proc. Combust. Inst. 26, 1919 (1996).

    Article  Google Scholar 

  18. H. Wei and C.S. Yoo: Dynamic structural and chemical responses of energetic solids, in Advances in Energetic Materials Research, edited by M.R. Manaa, C.-S. Yoo, E.J. Reed, and M.S. Strano (Mater. Res. Soc. Symp. Proc. 1405, Warrendale, PA, 2012). mrsfll-1405-y02-01.

    Google Scholar 

  19. C.S. Yoo, H. Wei, J.-Y. Chen, G. Shen, P. Chow, and Y. Xiao: Time- and angle-resolved x-ray diffraction to probe structural and chemical evolution during Al-Ni intermetallic reactions. Rev. Sci. Instrum. 82, 113901 (2011).

    Article  Google Scholar 

  20. J.C. Trenkle, L.J. Koerner, M.W. Tate, S.M. Gruner, T.P. Weihs, and T.C. Hufnagel: Phase transformations during rapid heating of Al/Ni multilayer foils. Appl. Phys. Lett. 93, 081903 (2008).

    Article  Google Scholar 

  21. J.C. Trenkle, L.J. Koerner, M.W. Tate, N. Walker, S.M. Gruner, T.P. Weihs, and T.C. Hufnagel: Time-resolved x-ray microdiffraction studies of phase transformations during rapidly propagating reactions in Al/Ni and Zr/Ni multilayer foils. J. Appl. Phys. 107, 113511 (2010).

    Article  Google Scholar 

  22. H. Wei, C.-S. Yoo, J.-Y. Chen, and G. Shen: Oxygen-diffusion limited metal combustions in Zr, Ti, and Fe foils: Time- and angle-resolved x-ray diffraction studies. J. Appl. Phys. 111, 063528 (2012).

    Article  Google Scholar 

  23. K. Fadenberger, I.E. Gunduz, C. Tsotsos, M. Kokonou, S. Gravani, S. Brandstetter, A. Bergamaschi, B. Schmitt, P.H. Mayrhofer, C.C. Doumanidis, and C. Rebholz: In situ observation of rapid reactions in nanoscale Ni-Al multilayer foils using synchrotron radiation. Appl. Phys. Lett. 97, 144101 (2010).

    Article  Google Scholar 

  24. W.M. Haynes: CRC Handbook of Chemistry and Physics, 92nd ed. (CRC Press, Boca Raton, FL, 2011).

    Google Scholar 

  25. W.H. Jiang, F.X. Liu, H.H. Liao, H. Choo, P.K. Liaw, B.J. Edwards, and B. Khomami: Temperature increases caused by shear banding in as-cast and relaxed Zr-based bulk metallic glasses under compression. J. Mater. Res. 23, 2967 (2008).

    Article  CAS  Google Scholar 

  26. H.A. Bruck, A.J. Rosakis, and W.L. Johnson: The dynamic compressive behavior of beryllium bearing bulk metallic glasses. J. Mater. Res. 11, 503 (1996).

    Article  CAS  Google Scholar 

  27. C.J. Gilbert, J.W. Ager, V. Schroeder, R.O. Ritchie, J.P. Lloyd, and J.R. Graham: Light emission during fracture of a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl. Phys. Lett. 74, 3809 (1999).

    Article  CAS  Google Scholar 

  28. S.E. Olsen and M.W. Beckstead: Burn time measurements of single aluminum particles in steam and CO2 mixtures. J. Propul. Power 12, 662 (1996).

    Article  CAS  Google Scholar 

  29. E.L. Dreizin: On the mechanism of asymmetric aluminum particle combustion. Combust. Flame 111, 841 (1999).

    Article  Google Scholar 

  30. S. Rossi, E.L. Dreizin, and C.K. Law: Combustion of aluminum particles in carbon dioxide. Combust. Sci. Technol. 164, 209 (2001).

    Article  CAS  Google Scholar 

  31. H. Wei and C.S. Yoo: in preparation.

  32. D. Kovalev, V. Shkiro, and V. Ponomarev: Dynamics of phase formation during combustion of Zr and Hf in air. Int. J. SelfPropag. High Temp. Synth. 16, 169 (2007).

    Article  CAS  Google Scholar 

  33. ASM Alloy Phase Diagrams Center: Diagram No. 103569, 101191.

  34. T. Arai and M. Hirabayashi: Oxygen ordering in the Zr-O alloy: A structural, calorimetric and resistometric study. J. Less-Common Met. 44, 291 (1976).

    Article  CAS  Google Scholar 

  35. R. Arroyave, L. Kaufman, and T.W. Eagar: Thermodynamic modeling of the Zr-O system. Calphad 26, 95 (2002).

    Article  CAS  Google Scholar 

  36. I.G. Assovskiy, V.I. Kolesnikov-Svinarev, G.P. Kuzhnetsov, and O.M. Zhigalina: Gravity effect in aluminum droplet ignition and combustion. In 5th International Microgravity Combustion Workshop, Cleveland, OH, 1999. Proceedings of the Fifth International Microgravity Combustion Workshop, NASA, May 18-20, 1999, Cleveland, OH; pp. 223–226.

    Google Scholar 

  37. I. Glassman: Combustion, 3rd ed. (Academic Press, Inc., San Diego, CA, 1996).

    Google Scholar 

  38. W.F. Wu, Z. Han, and Y. Li: Size-dependent “malleable-to-brittle” transition in a bulk metallic glass. Appl. Phys. Lett. 93, 061908 (2008).

    Article  Google Scholar 

  39. P. Murali and U. Ramamurty: Embrittlement of a bulk metallic glass due to sub-Tg annealing. Acta Mater. 53, 1467 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate Dr. Atakan Peker at Applied Science Laboratory at WSU, who provided Zr-rich bulk metallic glass used in the present study. We also recognize the contribution of Dr. Jing-Yin Chen at LLNL and Dr. Guoyin Shen at HPCAT/APS in time-resolved x-ray diffraction experiments. The x-ray work was done using the microdiffraction beamline (16IDD) at the High Pressure Collaborating Access Team (HPCAT) of the APS. Use of the HPCAT facility was supported by DOE-BES, DOE-NNSA (CDAC, LLNL, UNLV), NSF, DOD-TACOM, and the W.M. Keck Foundation. The present study has been supported by the DARPA (Grant No. W911NF-09-C-0033), U.S. DHS under Award Nos. 2008-ST-061-ED0001, DTRA (Grant No. HDTRA 1-09-1-0041), and NSF-DMR (Grant No. 0854618). The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choong-Shik Yoo.

Additional information

Address all correspondence to this author.

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, H., Yoo, CS. Dynamic responses of reactive metallic structures under thermal and mechanical ignitions. Journal of Materials Research 27, 2705–2717 (2012). https://doi.org/10.1557/jmr.2012.302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.302

Navigation