Skip to main content
Log in

Templated deposition of porous fullerene-C60 in the interior of siliceous sponge spicules as a biogenic microvessel

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The unique set of mechanical properties found in rigid biological tissues, which combine high strength and stiffness with superior toughness, offer inspiration for the design of advanced functional structural materials with outstanding performance. This paper reports on the first utilization of one such biogenic material—siliceous sponge spicules, the skeletal elements of sponges (Poriphera)—as a unique naturally nanostructured template for vacuum deposition, while also reporting on the effects of the required chemical and thermal treatments for template preparation on the material’s microstructure and mechanical properties. The confined space within the central channel of spicules from the sponge Euplectella acts simultaneously as a nanotemplate and as a biogenic, optically transparent, glassy microchamber for the preparation of micrometer-sized clusters of fullerene-C60 through vacuum deposition onto the nanostructured surface. This biological material allows an unprecedented and unique microporous morphology of C60 particles to be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
TABLE I
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

REFERENCES

  1. G. Mayer: Rigid biological systems as models for synthetic composites. Science 310, 1144 (2005).

    Article  CAS  Google Scholar 

  2. B.L. Smith, T.E. Schäffer, M. Vlani, J.B. Thompson, N.A. Frederick, J. Klndt, A. Belcher, G.D. Stuckyll, D.E. Morse, and P.K. Hansma: Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761 (1999).

    Article  CAS  Google Scholar 

  3. J.M. Lourtioz, H. Benisty, A. Chelnokov, S. David, and S. Olivier: Photonic crystals and the real world of optical telecommunications. Ann. Telecommun. 58, 1197 (2003).

    Google Scholar 

  4. G. Holzhuter, K. Lakshminarayanan, and T. Gerber: Silica structure in the spicules of the sponge Suberites domuncula. Anal. Bioanal. Chem. 382, 1121 (2005).

    Article  Google Scholar 

  5. W.E.G. Muller, S.I. Belikov, W. Tremel, C.C. Perry, W.W.C. Gieskes, A. Boreiko, and H.C. Schroder: Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37, 107 (2006).

    Article  Google Scholar 

  6. I. Sethmann, R. Hinrichs, G. Wӧrheide, and A. Putnis: Nano-cluster composite structure of calcitic sponge spicules–a case study of basic characteristics of biominerals. J. Inorg. Biochem. 100, 88 (2006).

    Article  CAS  Google Scholar 

  7. J.C. Weaver, L.I. Pietrasanta, N. Hedin, B.F. Chmelka, P.K. Hansma, and D.E. Morse: Nanostructural features of demosponge biosilica. J. Struct. Biol. 144, 271 (2003).

    Article  CAS  Google Scholar 

  8. W.E.G. Muller, K. Wendt, C. Geppert, M. Wiens, A. Reiber, and H.C. Schroder: Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonema sieboldi. Biosens. Bioelectron. 21, 1149 (2006).

    Article  Google Scholar 

  9. M. Sarikaya, H. Fong, N. Sunderland, B.D. Flinn, G. Mayer, A. Mescher, and E. Gaino: Biomimetic model of a sponge-spicular optical fiber-mechanical properties and structure. J. Mater. Res. 16, 1420 (2001).

    Article  CAS  Google Scholar 

  10. F.R. Brotzen and S.C. Moore: Mechanical testing of thin films. Int. Mater. Rev. 39, 24 (1994).

    Article  CAS  Google Scholar 

  11. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  12. A.A. Griffith: The phenomenon of rupture and flow in solids. Philos. Trans. R. Soc. London, Ser. A 221, 163 (1920).

    Google Scholar 

  13. J. Aizenberg, J.C. Weaver, M.S. Thanawala, V.C. Sundar, D.E. Morse, and P. Fratzl: Materials science: Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 309, 275 (2005).

    Article  CAS  Google Scholar 

  14. T. Fett and D. Munz: Stress Intensity Factors and Weight Functions (Computational Mechanics Publications, Southampton, UK, 1997), pp. 108–109.

    Google Scholar 

  15. F. Rachdi, L. Hajji, C. Goze, D.J. Jones, P. Maireles-Torres, and J. Roziere: Quantum size effects induced by confinement of C60 in MCM41. Solid State Commun. 100, 237 (1996).

    Article  CAS  Google Scholar 

  16. S. Subbiah and R. Mokaya: Transparent thin films and monoliths synthesized from fullerene doped mesoporous silica: Evidence for embedded monodispersed C60. Chem. Commun. 9, 92 (2003).

    Article  Google Scholar 

  17. A. Govindaraj, M. Nath, and M. Eswaramoorthy: Studies of C60 and C70 incorporated in cubic mesoporous silica (MCM-48). Chem. Phys. Lett. 317, 35 (2000).

    Article  CAS  Google Scholar 

  18. A.N. Khlobystov, D.A. Britz, and G.A.D. Briggs: Molecules in carbon nanotubes. Acc. Chem. Res. 38, 901 (2005).

    Article  CAS  Google Scholar 

  19. A. Woesz, J.C. Weaver, M. Kazanci, Y. Dauphin, J. Aizenberg, D.E. Morse, and P. Fratzl: Micromechanical properties of biological silica in skeletons of deep-sea sponges. J. Mater. Res. 21, 2068 (2006).

    Article  CAS  Google Scholar 

  20. M.W. Barsoum: Fundamentals of Ceramics (IOP Publishing Ltd., Bristol, UK, 2003).

    Book  Google Scholar 

  21. A. Miserez, J.C. Weaver, P.J. Thurner, J. Aizenberg, Y. Dauphin, P. Fratzl, D.E. Morse, and F.W. Zok: Effects of laminate architecture on fracture resistance of sponge biosilica: Lessons from nature. Adv. Funct. Mater. 18, 1241 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the contribution of Mr. Tatsuya Hirabayashi to the mechanical characterization stages of the study. Part of this work was conducted in the AIST Nano-Processing Facility, supported by the “Nanotechnology Support Project” of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arcan F. Dericioglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dericioglu, A.F., Naumov, P. & Tanaka, Y. Templated deposition of porous fullerene-C60 in the interior of siliceous sponge spicules as a biogenic microvessel. Journal of Materials Research 27, 2851–2857 (2012). https://doi.org/10.1557/jmr.2012.300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.300

Navigation