Skip to main content
Log in

Effects of Mg substitution on microstructure and electrical properties of NiMn2−xMgxO4 NTC ceramics

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

NiMn2−xMgxO4 (0 ≤ x ≤ 0.4) ceramics have been studied by powder x-ray diffraction (XRD), infrared (IR) spectroscopy, and thermogravimetric analysis. NiMn2−xMgxO4 ceramics are all single-phase with spinel structure. XRD and IR spectroscopy results indicate that Mg2+ ions occupy A- and B-site of spinel lattice, which inhibits the formation of cation vacancies. Moreover, Mg2+ substitution enhances the tolerance of the oxidation in air. As a result, Mg substitution leads to a significant increase in ρ25, temperature coefficient of resistivity B25/85, and activation energy, which improves the aging property of NiMn2−xMgxO4 negative temperature coefficient thermistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
TABLE II.
FIG. 3.
FIG. 4.

Similar content being viewed by others

References

  1. J.G. Fagan and V.R.W. Amarkoon: Reliability and reproducibility of ceramic sensors: Part I NTC thermistor. Am. Ceram. Soc. Bull. 72, 70 (1993).

    CAS  Google Scholar 

  2. W.M. Wang, X.C. Liu, F. Gao, and C.S. Tian: Synthesis of nanocrystalline Ni1Co0.2Mn1.8O4 powders for NTC thermistor by a gel auto-combustion process. Ceram. Int. 33, 459 (2007).

    Article  Google Scholar 

  3. V.A.M. Brabers and J. Terhell: Electrical conductivity and cation valencies in nickel manganite. Phys. State Sol. A 69, 325 (1982).

    Article  CAS  Google Scholar 

  4. I.G. Austin and N.F. Mott: Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41 (1969).

    Article  CAS  Google Scholar 

  5. S. Jagtap, S. Rane, S. Gosavi, and D. Amalnerkar: Preparation, characterization and electrical properties of spinel-type environment friendly thick film NTC thermistors. J. Eur. Ceram. Soc. 28, 2501 (2008).

    Article  CAS  Google Scholar 

  6. K. Park, J.K. Lee, S.J. Kim, W.S. Seo, W.S. Cho, C.W. Lee, and S. Nahm: The effect of Zn on the microstructure and electrical properties of Mn1.17−xNi0.93Co0.9ZnxO4 (0 ≤ x≤ 0.075) NTC thermistors. J. Alloy. Comp. 467, 310 (2009).

    Article  CAS  Google Scholar 

  7. C. Metzmacher, R. Mikkenie, and W.A. Groen: Indium-containing ceramics with negative temperature coefficient characteristics. J. Eur. Ceram. Soc. 20, 997 (2000).

    Article  CAS  Google Scholar 

  8. B. Gillot, J. Lorimier, F. Bernard, V. Nivoix, S. Douard, and Ph. Tailhades: Thermal behavior and cation distribution in nanosized Mo-Co ferrite spinels Mo0.5CoyFe2.5-yO4 (0 ≤ y ≤ 1) studied by DTG, FT-IR and DC conductivity. Mater. Chem. Phys. 61, 199 (1999).

    Article  CAS  Google Scholar 

  9. K. Park and J.K. Lee: Mn-Ni-Co-Cu-Zn-O NTC thermistors with high thermal stability for low resistance applications. Scr. Mater. 57, 329 (2007).

    Article  CAS  Google Scholar 

  10. K. Park and J.K. Lee: The effect of ZnO content and sintering temperature on the electrical properties of Cu-containing Mn1.95−xNi0.45Co0.15Cu0.45ZnxO4 (0 ≤ x ≤ 0.3) NTC thermistors. J. Alloy. Comp. 475, 513 (2009).

    Article  CAS  Google Scholar 

  11. S. Jagtap, S. Rane, R. Aiyer, S. Gosavi, and D. Amalnerkar: Study of microstructure, impedance and dc electrical properties of RuO2-spinel based screen printed ‘green’ NTC thermistor. Curr. Appl. Phys. 10, 1156 (2010).

    Article  Google Scholar 

  12. K. Park, S.J. Kim, J.G. Kim, and S. Nahm: Structural and electrical properties of MgO-doped Mn1.4Ni1.2Co0.4-xMgxO4 (0 ≤ x ≤ 0.25) NTC thermistors. J. Eur. Ceram. Soc. 27, 2009 (2007).

    Article  CAS  Google Scholar 

  13. G.N. Kustova, E.B. Burgina, G.G. Volkova, T.M. Yurieva, and L.M. Plyasova: IR spectroscopic investigation of cation distribution in Zn–Co oxide catalysts with spinel type structure. J. Mol. Catal. Chem. 158, 293 (2000).

    Article  CAS  Google Scholar 

  14. Z.B. Wang, C.H. Zhao, P.H. Yang, A.J.A. Winnubst, and C.S. Chen: X-ray diffraction and infrared spectra studies of FexMn2.34−xNi0.66O4 (0 < x < 1) NTC ceramics. J. Eur. Ceram. Soc. 26, 2833 (2006).

    Article  CAS  Google Scholar 

  15. S. Fritsch, J. Sarrias, M. Brieu, J.J. Couderc, J.L. Baudour, E. Snoeck, and A. Rousset: Correlation between the structure, the microstructure and the electrical properties of nickel manganite negative temperature coefficient (NTC) thermistors. Solid State Ion. 109, 229 (1998).

    Article  CAS  Google Scholar 

  16. P. Poix: Liaisons interatorniques et propriktds physiques des 268 C, 1139, 1969. composis rniniraus. Sedes, Paris 82 (1968) CR Acad, Sci.

  17. B. Gillot, M.E. Guendouzi, M. Kharroubi, P. Tailhades, R. Metz, and A. Rousset: Phase transformation-related kinetic in the oxidation of a manganese mixed oxide with a spinel structure. Mater. Chem. Phys. 24, 199 (1989).

    Article  CAS  Google Scholar 

  18. G.D.C. Csete de Györgyfalva and I.M. Reaney: Decomposition of NiMn2O4 spinel: An NTC thermistor material. J. Eur. Ceram. Soc. 21, 2145 (2001).

    Article  Google Scholar 

  19. R.D. Waldron: Infrared spectra of ferrites. Phys. Rev. 99, 1727 (1955).

    Article  CAS  Google Scholar 

  20. V.M. Ferreira, J.L. Baptista, S. Kamba, and J. Petzelt: Dielectric spectroscopy of MgTiO3-based ceramics in the 109–1014 Hz region. J. Mater. Sci. 28, 5894 (1993).

    Article  CAS  Google Scholar 

  21. J.M. Varghese, A. Seema, and K.R. Dayas: Microstructural, electrical and reliability aspects of chromium doped Ni-Mn-Fe-O NTC thermistor materials. Mater. Sci. Eng., B. 149, 47 (2008).

    Article  CAS  Google Scholar 

  22. S.E. Dorris and T.O. Mason: Electrical properties and cation valencies in Mn3O4. J. Am. Ceram. Soc. 71, 379 (1988).

    Article  CAS  Google Scholar 

  23. A. Basu, A.W. Brinkman, and R. Schmidt: Effect of oxygen partial pressure on the NTCR characteristics of sputtered NixMn3−xO4+δ thin films. J. Eur. Ceram. Soc. 24, 1247 (2004).

    Article  CAS  Google Scholar 

  24. R. Metz: Electrical properties of NTC thermistors made of manganite ceramics of general spinel structure: Mn3−xxMxNxO4 (0 ≤ x + x′ ≤ 1; M and N being Ni, Co or Cu). Aging phenomenon study. J. Mater. Sci. 35, 4705 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Zhejiang Provincial Science Foundation (No. Y6110475) and the Zhejiang Provincial Fund of Science and Technology (Grant No. 2007C21003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangying Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Zhang, J. Effects of Mg substitution on microstructure and electrical properties of NiMn2−xMgxO4 NTC ceramics. Journal of Materials Research 27, 928–931 (2012). https://doi.org/10.1557/jmr.2012.29

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.29

Navigation