Abstract
NiMn2−xMgxO4 (0 ≤ x ≤ 0.4) ceramics have been studied by powder x-ray diffraction (XRD), infrared (IR) spectroscopy, and thermogravimetric analysis. NiMn2−xMgxO4 ceramics are all single-phase with spinel structure. XRD and IR spectroscopy results indicate that Mg2+ ions occupy A- and B-site of spinel lattice, which inhibits the formation of cation vacancies. Moreover, Mg2+ substitution enhances the tolerance of the oxidation in air. As a result, Mg substitution leads to a significant increase in ρ25, temperature coefficient of resistivity B25/85, and activation energy, which improves the aging property of NiMn2−xMgxO4 negative temperature coefficient thermistors.
Similar content being viewed by others
References
J.G. Fagan and V.R.W. Amarkoon: Reliability and reproducibility of ceramic sensors: Part I NTC thermistor. Am. Ceram. Soc. Bull. 72, 70 (1993).
W.M. Wang, X.C. Liu, F. Gao, and C.S. Tian: Synthesis of nanocrystalline Ni1Co0.2Mn1.8O4 powders for NTC thermistor by a gel auto-combustion process. Ceram. Int. 33, 459 (2007).
V.A.M. Brabers and J. Terhell: Electrical conductivity and cation valencies in nickel manganite. Phys. State Sol. A 69, 325 (1982).
I.G. Austin and N.F. Mott: Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41 (1969).
S. Jagtap, S. Rane, S. Gosavi, and D. Amalnerkar: Preparation, characterization and electrical properties of spinel-type environment friendly thick film NTC thermistors. J. Eur. Ceram. Soc. 28, 2501 (2008).
K. Park, J.K. Lee, S.J. Kim, W.S. Seo, W.S. Cho, C.W. Lee, and S. Nahm: The effect of Zn on the microstructure and electrical properties of Mn1.17−xNi0.93Co0.9ZnxO4 (0 ≤ x≤ 0.075) NTC thermistors. J. Alloy. Comp. 467, 310 (2009).
C. Metzmacher, R. Mikkenie, and W.A. Groen: Indium-containing ceramics with negative temperature coefficient characteristics. J. Eur. Ceram. Soc. 20, 997 (2000).
B. Gillot, J. Lorimier, F. Bernard, V. Nivoix, S. Douard, and Ph. Tailhades: Thermal behavior and cation distribution in nanosized Mo-Co ferrite spinels Mo0.5CoyFe2.5-yO4 (0 ≤ y ≤ 1) studied by DTG, FT-IR and DC conductivity. Mater. Chem. Phys. 61, 199 (1999).
K. Park and J.K. Lee: Mn-Ni-Co-Cu-Zn-O NTC thermistors with high thermal stability for low resistance applications. Scr. Mater. 57, 329 (2007).
K. Park and J.K. Lee: The effect of ZnO content and sintering temperature on the electrical properties of Cu-containing Mn1.95−xNi0.45Co0.15Cu0.45ZnxO4 (0 ≤ x ≤ 0.3) NTC thermistors. J. Alloy. Comp. 475, 513 (2009).
S. Jagtap, S. Rane, R. Aiyer, S. Gosavi, and D. Amalnerkar: Study of microstructure, impedance and dc electrical properties of RuO2-spinel based screen printed ‘green’ NTC thermistor. Curr. Appl. Phys. 10, 1156 (2010).
K. Park, S.J. Kim, J.G. Kim, and S. Nahm: Structural and electrical properties of MgO-doped Mn1.4Ni1.2Co0.4-xMgxO4 (0 ≤ x ≤ 0.25) NTC thermistors. J. Eur. Ceram. Soc. 27, 2009 (2007).
G.N. Kustova, E.B. Burgina, G.G. Volkova, T.M. Yurieva, and L.M. Plyasova: IR spectroscopic investigation of cation distribution in Zn–Co oxide catalysts with spinel type structure. J. Mol. Catal. Chem. 158, 293 (2000).
Z.B. Wang, C.H. Zhao, P.H. Yang, A.J.A. Winnubst, and C.S. Chen: X-ray diffraction and infrared spectra studies of FexMn2.34−xNi0.66O4 (0 < x < 1) NTC ceramics. J. Eur. Ceram. Soc. 26, 2833 (2006).
S. Fritsch, J. Sarrias, M. Brieu, J.J. Couderc, J.L. Baudour, E. Snoeck, and A. Rousset: Correlation between the structure, the microstructure and the electrical properties of nickel manganite negative temperature coefficient (NTC) thermistors. Solid State Ion. 109, 229 (1998).
P. Poix: Liaisons interatorniques et propriktds physiques des 268 C, 1139, 1969. composis rniniraus. Sedes, Paris 82 (1968) CR Acad, Sci.
B. Gillot, M.E. Guendouzi, M. Kharroubi, P. Tailhades, R. Metz, and A. Rousset: Phase transformation-related kinetic in the oxidation of a manganese mixed oxide with a spinel structure. Mater. Chem. Phys. 24, 199 (1989).
G.D.C. Csete de Györgyfalva and I.M. Reaney: Decomposition of NiMn2O4 spinel: An NTC thermistor material. J. Eur. Ceram. Soc. 21, 2145 (2001).
R.D. Waldron: Infrared spectra of ferrites. Phys. Rev. 99, 1727 (1955).
V.M. Ferreira, J.L. Baptista, S. Kamba, and J. Petzelt: Dielectric spectroscopy of MgTiO3-based ceramics in the 109–1014 Hz region. J. Mater. Sci. 28, 5894 (1993).
J.M. Varghese, A. Seema, and K.R. Dayas: Microstructural, electrical and reliability aspects of chromium doped Ni-Mn-Fe-O NTC thermistor materials. Mater. Sci. Eng., B. 149, 47 (2008).
S.E. Dorris and T.O. Mason: Electrical properties and cation valencies in Mn3O4. J. Am. Ceram. Soc. 71, 379 (1988).
A. Basu, A.W. Brinkman, and R. Schmidt: Effect of oxygen partial pressure on the NTCR characteristics of sputtered NixMn3−xO4+δ thin films. J. Eur. Ceram. Soc. 24, 1247 (2004).
R. Metz: Electrical properties of NTC thermistors made of manganite ceramics of general spinel structure: Mn3−x−x′MxNx′O4 (0 ≤ x + x′ ≤ 1; M and N being Ni, Co or Cu). Aging phenomenon study. J. Mater. Sci. 35, 4705 (2000).
Acknowledgments
This research was financially supported by the Zhejiang Provincial Science Foundation (No. Y6110475) and the Zhejiang Provincial Fund of Science and Technology (Grant No. 2007C21003).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, J., Zhang, J. Effects of Mg substitution on microstructure and electrical properties of NiMn2−xMgxO4 NTC ceramics. Journal of Materials Research 27, 928–931 (2012). https://doi.org/10.1557/jmr.2012.29
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2012.29