Skip to main content
Log in

Silicon carbide quantum dots for bioimaging

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Luminescent nanocrystals or quantum dots (QDs) have great potential for bioanalysis as well as optoelectronics. Here we report an effective and inexpensive fabrication method of silicon carbide quantum dots (SiC QDs), with diameter below 8 nm, based on electroless wet chemical etching. Our samples show strong violet-blue emission in the 410–450 nm region depending on the solvents used and particle size. The cytotoxic properties of the SiC QDs based on alamarBlueTM assay cells were studied. The presence of the QDs dots does not affect cell growth in a wide concentration range. Two-photon excitation showed significant response from SiC nanocrystals that were injected into hippocampal CA1 pyramidal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.J. Murcia and C.A. Naumann: Biofunctionalization of fluorescent nanoparticles, in Nanotechnologies for Life Sciences, Vol. 1, edited by S.S.R Kumar (Wiley-VCH, Weinheim, 2005), pp. 1–40.

    Google Scholar 

  2. I.L. Medintz, H.T. Uyeda, E.R. Goldman, and H. Mattoussi: Quantum dot bioconjugates for imaging, labeling and sensing. Nat. Mater. 4, 435, (2005).

    Article  CAS  Google Scholar 

  3. S. Kim, B. Fisher, H.J. Eisler, and M. Bawendi: Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J. Am. Chem. Soc. 125, 11466, (2003).

    Article  CAS  Google Scholar 

  4. Y.W. Cao, J. Aksenton, V. Soloviev, and U. Banin: Colloidal synthesis and properties of InAs/InP and InAs/CdSe core/shell, nanocrystals. in Semiconductor Quantum Dots, edited by S.C. Moss, D. Ila, H.W.H Lee, and D.J. Norris (Mater. Res. Soc. Symp. Proc. 571, Warrendale, PA, 2000) p. 75.

    Google Scholar 

  5. R. Hardman: A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165, (2006).

    Article  Google Scholar 

  6. F. Hua, F. Erogbogbo, K.T. Yong, I. Roy, G.X. Xu, P.N. Prasad, and M.T. Swihart: Organically capped silicon nanoparticles with blue photoluminescence prepared by hydrosilylation followed by oxidation. ACS Nano 2, 873, (2008).

    Article  Google Scholar 

  7. Y. Kanemitsu, N. Shimizu, T. Komoda, P.L.F Hemment, and B.J. Sealy: Photoluminescent spectrum and dynamics of Si+-ion-implanted and thermally annealed SiO2 glasses. Phys. Rev. B 54, R14329 (1996).

    Article  CAS  Google Scholar 

  8. G. Hadjisawas and P. Kelires: Structure and energetics of Si nanocrystals embedded in a-SiO2. Phys. Rev. Lett. 93, 226104 (2004).

    Article  Google Scholar 

  9. X. Wu, J. Fan, T. Qiu, X. Yang, G. Siu, and P.K. Chu: Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites. Phys. Rev. Lett. 94, 6 (2005).

    Google Scholar 

  10. J.Y. Fan, X.L. Wu, H.X. Li, H.W. Liu, G.G. Siu, and P.K. Chu: Luminescence from colloidal 3C-SiC nanocrystals in different solvents. Appl. Phys. Lett. 88, 041909 (2006).

    Article  Google Scholar 

  11. J. Botsoa, J.M. Bluet, V. Lysenko, O. Marty, D. Barbier, and G. Guillot: Photoluminescence of 6H–SiC nanostructures fabricated by electrochemical etching. J. Appl. Phys. 102, 083526 (2007).

    Article  Google Scholar 

  12. Z. Makkai, B. Pécz, I. Bársony, G. Vida, A. Pongrácz, K.V. Josepovits, and P. Deák: Isolated SiC nanocrystals in SiO2. Appl. Phys. Lett. 86, 253109 (2005).

    Article  Google Scholar 

  13. C. Coletti, M.J. Jaroszeski, A. Pallaoro, A.M. Hoff, S. Iannotta, and S.E. Saddow: Biocompatibility and wettability of crystalline SiC and Si surfaces. In IEEE EMBS Proceedings 29th Annual International Conference. 5849–5852 (EMBS, Lyon, France, 2007).

    Google Scholar 

  14. C.T. Raya, D.H. Maldonado, J.R. Rico, C.G. Gañan, A.R. de Arellano-Lopez, and J.M. Fernandez: Fabrication, chemical etching, and compressive strength of porous biomimetic SiC for medical implants. J. Mater. Res. 23, 3247–3254 (2008).

    Article  Google Scholar 

  15. J. Botsoa, V. Lysenko, A. Géloën, O. Marty, J.M. Bluet, and G. Guillot: Application of 3C-SiC quantum dots for living cell imaging. Appl. Phys. Lett. 92, 173902 (2008).

    Article  Google Scholar 

  16. T. Serdiuk, V. Lysenko, V. Skryshevsky, and A. Géloën: Vapor phase-mediated cellular uptake of sub-5 nm nanoparticles. Nanoscale Res. Lett. 7, 212 (2012).

    Article  Google Scholar 

  17. D. Beke, Zs. Szekrényes, I. Balogh, M. Veres, É. Fazakas, L.K. Varga, K. Kamarás, Zs. Czigány, and A. Gali: Characterization of luminescent silicon carbide nanocrystals prepared by reactive bonding and subsequent wet chemical etching. Appl. Phys. Lett. 99, 213108 (2011).

    Article  Google Scholar 

  18. J. Zhu, Z. Liu, X.L. Wu, L.L. Xu, W.C. Zhang, and P.K. Chu: Luminescent small-diameter 3C-SiC nanocrystals fabricated via a simple chemical etching method. Nanotechnology 18, 365603 (2007).

    Article  Google Scholar 

  19. G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E.S. Vizi, B. Roska, and B. Rózsa: Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat. Methods 9, 201 (2012).

    Article  CAS  Google Scholar 

  20. M. Maravall, Z.F. Mainen, B.L. Sabatini, and K. Svoboda: Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys. J. 78, 2655–2667 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Hungarian OTKA Grant No. 101819 and Bolyai Jânos Research Scholarship of HAS for Zs.C. are acknowledged. A.G. and L.B. acknowledge the support from the special research program “Lendület” from the Hungarian Academy of Sciences. Two-photon imaging was supported by Hungarian-French Grant (TÉT_10-1-2011-0389), Hungarian-Swiss Grant (SH/7/2/8), and OTKA (K 105997). Hungarian OTKA Grant Nos. 106114 and 106216 are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Beke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beke, D., Szekrényes, Z., Pálfi, D. et al. Silicon carbide quantum dots for bioimaging. Journal of Materials Research 28, 205–209 (2013). https://doi.org/10.1557/jmr.2012.296

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.296

Navigation